NPL network (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "NPL network" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
2nd place
2nd place
1st place
1st place
5th place
5th place
11th place
8th place
6th place
6th place
8th place
10th place
low place
low place
low place
low place
12th place
11th place
7,594th place
4,706th place
34th place
27th place
low place
low place
low place
low place
low place
low place
low place
low place
low place
low place
652nd place
515th place
1,185th place
840th place
2,948th place
1,879th place
833rd place
567th place
low place
7,456th place
low place
low place
121st place
142nd place
3,436th place
2,114th place
5,196th place
3,635th place
low place
low place
low place
low place
1,994th place
1,215th place
4,903rd place
3,679th place
7,025th place
4,914th place
1,306th place
885th place
75th place
83rd place
1,266th place
860th place
214th place
176th place
340th place
295th place
741st place
577th place
207th place
136th place
2,213th place
1,495th place
774th place
716th place
6,184th place
4,465th place
8,313th place
5,298th place
786th place
558th place
26th place
20th place
low place
low place
low place
low place
low place
low place

academia.edu

acm.org

dl.acm.org

  • Edmondson-Yurkanan, Chris (2007). "SIGCOMM's archaeological journey into networking's past". Communications of the ACM. 50 (5): 63–68. doi:10.1145/1230819.1230840. ISSN 0001-0782. In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."

archive.org

bbc.co.uk

news.bbc.co.uk

bbc.co.uk

  • "BT ad gets into a muddle about the internet's origins". BBC. 15 February 2016. Retrieved 25 September 2017. Although University College London subsequently helped test the networking protocols that gave rise to what we now recognise as the internet, much of the original work on them had been carried out at Stanford. "While Donald Davies and his team at the National Physical Laboratory can lay claim to having developed packet-switching that enabled the technological infrastructure of the internet, Vint Cerf and a number of Americans were the driving forces behind the Arpanet that became the internet," commented Prof Martin Campbell-Kelly, a trustee at The National Museum of Computing.

books.google.com

computer.org

history.computer.org

  • "Computer Pioneers - Donald W. Davies". IEEE Computer Society. Retrieved 20 February 2020. In 1965, Davies pioneered new concepts for computer communications in a form to which he gave the name "packet switching." ... The design of the ARPA network (ArpaNet) was entirely changed to adopt this technique.; "A Flaw In The Design". The Washington Post. 30 May 2015. The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.

computerconservationsociety.org

computerhistory.org

computerweekly.com

doi.org

  • Edmondson-Yurkanan, Chris (2007). "SIGCOMM's archaeological journey into networking's past". Communications of the ACM. 50 (5): 63–68. doi:10.1145/1230819.1230840. ISSN 0001-0782. In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."
  • Roberts, Lawrence G. (November 1978). "The evolution of packet switching" (PDF). Proceedings of the IEEE. 66 (11): 1307–13. doi:10.1109/PROC.1978.11141. S2CID 26876676. Both Paul Baran and Donald Davies in their original papers anticipated the use of T1 trunks
  • Needham, R. M. (2002). "Donald Watts Davies, C.B.E. 7 June 1924 – 28 May 2000". Biographical Memoirs of Fellows of the Royal Society. 48: 87–96. doi:10.1098/rsbm.2002.0006. S2CID 72835589. The 1967 Gatlinburg paper was influential on the development of ARPAnet, which might otherwise have been built with less extensible technology. ... Davies was invited to Japan to lecture on packet switching.
  • Campbell-Kelly, Martin (1987). "Data Communications at the National Physical Laboratory (1965-1975)". Annals of the History of Computing. 9 (3/4): 221–247. doi:10.1109/MAHC.1987.10023. S2CID 8172150. the first occurrence in print of the term protocol in a data communications context ... the next hardware tasks were the detailed design of the interface between the terminal devices and the switching computer, and the arrangements to secure reliable transmission of packets of data over the high-speed lines
  • Campbell-Kelly, Martin (1987). "Data Communications at the National Physical Laboratory (1965-1975)". Annals of the History of Computing. 9 (3/4): 221–247. doi:10.1109/MAHC.1987.10023. S2CID 8172150.
  • John S, Quarterman; Josiah C, Hoskins (1986). "Notable computer networks". Communications of the ACM. 29 (10): 932–971. doi:10.1145/6617.6618. S2CID 25341056. The first packet-switching network was implemented at the National Physical Laboratories in the United Kingdom. It was quickly followed by the ARPANET in 1969.
  • Kleinrock, L. (1978). "Principles and lessons in packet communications". Proceedings of the IEEE. 66 (11): 1320–1329. doi:10.1109/PROC.1978.11143. ISSN 0018-9219. Paul Baran ... focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
  • Kahn, R.E.; Uncapher, K.W.; van Trees, H.L. (1978). "Scanning the issue". Proceedings of the IEEE. 66 (11): 1303–1306. doi:10.1109/PROC.1978.11140. ISSN 0018-9219.
  • McKenzie, Alexander (2011). "INWG and the Conception of the Internet: An Eyewitness Account". IEEE Annals of the History of Computing. 33 (1): 66–71. doi:10.1109/MAHC.2011.9. ISSN 1934-1547. S2CID 206443072.
  • Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. CiteSeerX 10.1.1.113.7384. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  • Barber, D L. (1975). "Cost project 11". ACM SIGCOMM Computer Communication Review. 5 (3): 12–15. doi:10.1145/1015667.1015669. S2CID 28994436.
  • Cerf, V.; McKenzie, A; Scantlebury, R; Zimmermann, H (1976). "Proposal for an international end to end protocol". ACM SIGCOMM Computer Communication Review. 6: 63–89. doi:10.1145/1015828.1015832. S2CID 36954091.
  • Roberts, Lawrence G. (November 1978). "The evolution of packet switching" (PDF). Proceedings of the IEEE. 66 (11): 1307–13. doi:10.1109/PROC.1978.11141. S2CID 26876676. Significant aspects of the network's internal operation, such as routing, flow control, software design, and network control were developed by a BBN team consisting of Frank Heart, Robert Kahn, Severo Omstein, William Crowther, and David Walden

dtic.mil

apps.dtic.mil

ethw.org

  • "Oral-History:Donald Davies & Derek Barber". Retrieved 13 April 2016. the ARPA network is being implemented using existing telegraphic techniques simply because the type of network we describe does not exist. It appears that the ideas in the NPL paper at this moment are more advanced than any proposed in the USA

gla.ac.uk

dcs.gla.ac.uk

historyofcomputercommunications.info

  • Pelkey, James (2007), "NPL Network and Donald Davies 1966 - 1971", Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968-1988, retrieved 13 April 2016
  • Pelkey, James. "8.3 CYCLADES Network and Louis Pouzin 1971–1972". Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968–1988.
  • Pelkey, James L. "6.1 The Communications Subnet: BBN 1969". Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968–1988. As Kahn recalls: ... Paul Baran's contributions ... If you look at what he wrote, he was talking about switches that were low-cost electronics. The idea of putting powerful computers in these locations hadn't quite occurred to him as being cost effective. So the idea of computer switches was missing. The whole notion of protocols didn't exist at that time. And the idea of computer-to-computer communications was really a secondary concern.

hs-augsburg.de

elk.informatik.hs-augsburg.de

  • by Vinton Cerf, as told to Bernard Aboba (1993). "How the Internet Came to Be". Archived from the original on 26 September 2017. Retrieved 25 September 2017. We began doing concurrent implementations at Stanford, BBN, and University College London. So effort at developing the Internet protocols was international from the beginning.

ieee.org

ieeexplore.ieee.org

ietf.org

datatracker.ietf.org

imperial.ac.uk

spiral.imperial.ac.uk

  • Clarke, Peter (1982). Packet and circuit-switched data networks (PDF) (PhD thesis). Department of Electrical Engineering, Imperial College of Science and Technology, University of London. "As well as the packet switched network actually built at NPL for communication between their local computing facilities, some simulation experiments have been performed on larger networks. A summary of this work is reported in [69]. The work was carried out to investigate networks of a size capable of providing data communications facilities to most of the U.K. ... Experiments were then carried out using a method of flow control devised by Davies [70] called 'isarithmic' flow control. ... The simulation work carried out at NPL has, in many respects, been more realistic than most of the ARPA network theoretical studies."

inc.com

  • Haughney Dare-Bryan, Christine (22 June 2023). Computer Freaks (Podcast). Chapter Two: In the Air. Inc. Magazine. 35:55 minutes in. Leonard Kleinrock: Donald Davies ... did make a single node packet switch before ARPA did

inria.fr

internethalloffame.org

itif.org

jstor.org

man.ac.uk

cs.man.ac.uk

  • Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017. Roger actually convinced Larry that what he was talking about was all wrong and that the way that NPL were proposing to do it was right. I've got some notes that say that first Larry was sceptical but several of the others there sided with Roger and eventually Larry was overwhelmed by the numbers.
  • Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017. There had been a paper written by [Paul Baran] from the Rand Corporation which, in a sense, foreshadowed packet switching in a way for speech networks and voice networks
  • Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017.
  • Derek Barber. "The Origins of Packet Switching". Computer Resurrection Issue 5. Retrieved 5 June 2024. I actually set up the first meeting between John Wedlake of the British Post Office and [Rémi Després] of the French PTT which led to X25. There was a problem about virtual calls in EIN, so I called this meeting and that actually did in the end lead to X25.

nasa.gov

ntrs.nasa.gov

nethistory.info

  • "On packet switching". Net History. Retrieved 8 January 2024. [Scantlebury said] Clearly Donald and Paul Baran had independently come to a similar idea albeit for different purposes. Paul for a survivable voice/telex network, ours for a high-speed computer network.

newscientist.com

packet.cc

  • Roberts, Dr. Lawrence G. (May 1995). "The ARPANET & Computer Networks". Archived from the original on 24 March 2016. Retrieved 13 April 2016. Then in June 1966, Davies wrote a second internal paper, "Proposal for a Digital Communication Network" In which he coined the word packet,- a small sub part of the message the user wants to send, and also introduced the concept of an "Interface computer" to sit between the user equipment and the packet network.
  • Roberts, Dr. Lawrence G. (May 1995). "The ARPANET & Computer Networks". Archived from the original on 14 February 2019. Retrieved 16 June 2019.
  • Roberts, Lawrence G. (November 1978). "The Evolution of Packet Switching". Archived from the original on 24 March 2016. Retrieved 9 April 2016.

princeton.edu

cs.princeton.edu

  • Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. CiteSeerX 10.1.1.113.7384. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.

psu.edu

citeseerx.ist.psu.edu

  • Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. CiteSeerX 10.1.1.113.7384. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.

rfc-editor.org

rogerdmoore.ca

semanticscholar.org

api.semanticscholar.org

si.edu

americanhistory.si.edu

  • "Smithsonian Oral and Video Histories: Vinton Cerf". National Museum of American History. Smithsonian Institution. 24 April 1990. Retrieved 23 September 2019. Roger Scantlebury was one of the major players. And Donald Davies who ran, at least he was superintendent of the information systems division or something like that. I absolutely had a lot of interaction with NPL at the time. They in fact came to the ICCC 72 and they had been coming to previous meetings of what is now called Datacomm. Its first incarnation was a long title having to do with the analysis and optimization of computer communication networks, or something like that. This started in late 1969, I think, was when the first meeting happened in Pine Hill, Georgia. I didn't go to that one, but I went to the next one that was at Stanford, I think. That's where I met Scantlebury, I believe, for the first time. Then I had a lot more interaction with him. I would come to the UK fairly regularly, partly for IFIP or INWG reasons

sri.com

technicshistory.com

theguardian.com

thocp.net

tnmoc.org

topquark.co.uk

  • Rayner, David; Barber, Derek; Scantlebury, Roger; Wilkinson, Peter (2001). NPL, Packet Switching and the Internet. Symposium of the Institution of Analysts & Programmers 2001. Archived from the original on 7 August 2003. Retrieved 13 June 2024. The system first went 'live' early in 1969
  • Wilkinson, Peter (2001). NPL Development of Packet Switching. Symposium of the Institution of Analysts & Programmers 2001. Archived from the original on 7 August 2003. Retrieved 13 June 2024. The feasibility studies continued with an attempt to apply queuing theory to study overall network performance. This proved to be intractable so we quickly turned to simulation.

ucf.edu

ece.ucf.edu

ucl.ac.uk

discovery.ucl.ac.uk

umn.edu

manifold.umn.edu

usf.edu

ismlab.usf.edu

  • Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching" (PDF). IEEE Invited Paper. Retrieved 10 September 2017. In nearly all respects, Davies' original proposal, developed in late 1965, was similar to the actual networks being built today.

washingtonpost.com

  • "Computer Pioneers - Donald W. Davies". IEEE Computer Society. Retrieved 20 February 2020. In 1965, Davies pioneered new concepts for computer communications in a form to which he gave the name "packet switching." ... The design of the ARPA network (ArpaNet) was entirely changed to adopt this technique.; "A Flaw In The Design". The Washington Post. 30 May 2015. The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
  • "A Flaw in the Design". The Washington Post. 30 May 2015. Archived from the original on 8 November 2020. Retrieved 20 February 2020. The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.

web.archive.org

worldcat.org

search.worldcat.org

  • Edmondson-Yurkanan, Chris (2007). "SIGCOMM's archaeological journey into networking's past". Communications of the ACM. 50 (5): 63–68. doi:10.1145/1230819.1230840. ISSN 0001-0782. In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."
  • Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017. Roger actually convinced Larry that what he was talking about was all wrong and that the way that NPL were proposing to do it was right. I've got some notes that say that first Larry was sceptical but several of the others there sided with Roger and eventually Larry was overwhelmed by the numbers.
  • Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017. There had been a paper written by [Paul Baran] from the Rand Corporation which, in a sense, foreshadowed packet switching in a way for speech networks and voice networks
  • Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017.
  • Wilkinson, Peter (Summer 2020). "Packet Switching and the NPL Network". RESURRECTION: The Journal of the Computer Conservation Society (90). ISSN 0958-7403.
  • Guardian Staff (25 June 2013). "Internet pioneers airbrushed from history". The Guardian. ISSN 0261-3077. Retrieved 31 July 2020. This was the first digital local network in the world to use packet switching and high-speed links.
  • Kleinrock, L. (1978). "Principles and lessons in packet communications". Proceedings of the IEEE. 66 (11): 1320–1329. doi:10.1109/PROC.1978.11143. ISSN 0018-9219. Paul Baran ... focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
  • Kahn, R.E.; Uncapher, K.W.; van Trees, H.L. (1978). "Scanning the issue". Proceedings of the IEEE. 66 (11): 1303–1306. doi:10.1109/PROC.1978.11140. ISSN 0018-9219.
  • Campbell-Kelly, Martin (Autumn 2008). "Pioneer Profiles: Donald Davies". Computer Resurrection (44). ISSN 0958-7403.
  • McKenzie, Alexander (2011). "INWG and the Conception of the Internet: An Eyewitness Account". IEEE Annals of the History of Computing. 33 (1): 66–71. doi:10.1109/MAHC.2011.9. ISSN 1934-1547. S2CID 206443072.
  • Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. CiteSeerX 10.1.1.113.7384. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  • Russell, Andrew L.; Schafer, Valérie (2014). "In the Shadow of ARPANET and Internet: Louis Pouzin and the Cyclades Network in the 1970s". Technology and Culture. 55 (4): 893–894. ISSN 0040-165X. JSTOR 24468474.

zdnet.com