Analysis of information sources in references of the Wikipedia article "NPL network" in English language version.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."
the first occurrence in print of the term protocol in a data communications context ... the next hardware tasks were the detailed design of the interface between the terminal devices and the switching computer, and the arrangements to secure reliable transmission of packets of data over the high-speed lines
The NPL network ran at multi-megabit speeds in the late 1960s, faster than any network at the time.
Does that mean Britain invented the internet? "Yes and no," said Mr Scantlebury. "Certainly the underlying technology of the internet, which is packet switching, we did invent."
Although University College London subsequently helped test the networking protocols that gave rise to what we now recognise as the internet, much of the original work on them had been carried out at Stanford. "While Donald Davies and his team at the National Physical Laboratory can lay claim to having developed packet-switching that enabled the technological infrastructure of the internet, Vint Cerf and a number of Americans were the driving forces behind the Arpanet that became the internet," commented Prof Martin Campbell-Kelly, a trustee at The National Museum of Computing.
they lacked one vital ingredient. Since none of them had heard of Paul Baran they had no serious idea of how to make the system work. And it took an English outfit to tell them.
Although there was considerable technical interchange between the NPL group and those who designed and implemented the ARPANET, the NPL Data Network effort appears to have had little fundamental impact on the design of ARPANET. Such major aspects of the NPL Data Network design as the standard network interface, the routing algorithm, and the software structure of the switching node were largely ignored by the ARPANET designers. There is no doubt, however, that in many less fundamental ways the NPL Data Network had and effect on the design and evolution of the ARPANET.
Davies's invention of packet switching and design of computer communication networks ... were a cornerstone of the development which led to the Internet
Although there was considerable technical interchange between the NPL group and those who designed and implemented the ARPANET, the NPL Data Network effort appears to have had little fundamental impact on the design of ARPANET. Such major aspects of the NPL Data Network design as the standard network interface, the routing algorithm, and the software structure of the switching node were largely ignored by the ARPANET designers. There is no doubt, however, that in many less fundamental ways the NPL Data Network had and effect on the design and evolution of the ARPANET.
In 1965, Davies pioneered new concepts for computer communications in a form to which he gave the name "packet switching." ... The design of the ARPA network (ArpaNet) was entirely changed to adopt this technique.; "A Flaw In The Design". The Washington Post. 30 May 2015.
The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."
Both Paul Baran and Donald Davies in their original papers anticipated the use of T1 trunks
The 1967 Gatlinburg paper was influential on the development of ARPAnet, which might otherwise have been built with less extensible technology. ... Davies was invited to Japan to lecture on packet switching.
the first occurrence in print of the term protocol in a data communications context ... the next hardware tasks were the detailed design of the interface between the terminal devices and the switching computer, and the arrangements to secure reliable transmission of packets of data over the high-speed lines
The first packet-switching network was implemented at the National Physical Laboratories in the United Kingdom. It was quickly followed by the ARPANET in 1969.
Paul Baran ... focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
Significant aspects of the network's internal operation, such as routing, flow control, software design, and network control were developed by a BBN team consisting of Frank Heart, Robert Kahn, Severo Omstein, William Crowther, and David Walden
the ARPA network is being implemented using existing telegraphic techniques simply because the type of network we describe does not exist. It appears that the ideas in the NPL paper at this moment are more advanced than any proposed in the USA
As Kahn recalls: ... Paul Baran's contributions ... If you look at what he wrote, he was talking about switches that were low-cost electronics. The idea of putting powerful computers in these locations hadn't quite occurred to him as being cost effective. So the idea of computer switches was missing. The whole notion of protocols didn't exist at that time. And the idea of computer-to-computer communications was really a secondary concern.
We began doing concurrent implementations at Stanford, BBN, and University College London. So effort at developing the Internet protocols was international from the beginning.
Paul Baran ... focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
Leonard Kleinrock: Donald Davies ... did make a single node packet switch before ARPA did
Roger actually convinced Larry that what he was talking about was all wrong and that the way that NPL were proposing to do it was right. I've got some notes that say that first Larry was sceptical but several of the others there sided with Roger and eventually Larry was overwhelmed by the numbers.
There had been a paper written by [Paul Baran] from the Rand Corporation which, in a sense, foreshadowed packet switching in a way for speech networks and voice networks
I actually set up the first meeting between John Wedlake of the British Post Office and [Rémi Després] of the French PTT which led to X25. There was a problem about virtual calls in EIN, so I called this meeting and that actually did in the end lead to X25.
[Scantlebury said] Clearly Donald and Paul Baran had independently come to a similar idea albeit for different purposes. Paul for a survivable voice/telex network, ours for a high-speed computer network.
Then in June 1966, Davies wrote a second internal paper, "Proposal for a Digital Communication Network" In which he coined the word packet,- a small sub part of the message the user wants to send, and also introduced the concept of an "Interface computer" to sit between the user equipment and the packet network.
The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
Both Paul Baran and Donald Davies in their original papers anticipated the use of T1 trunks
The 1967 Gatlinburg paper was influential on the development of ARPAnet, which might otherwise have been built with less extensible technology. ... Davies was invited to Japan to lecture on packet switching.
the first occurrence in print of the term protocol in a data communications context ... the next hardware tasks were the detailed design of the interface between the terminal devices and the switching computer, and the arrangements to secure reliable transmission of packets of data over the high-speed lines
The first packet-switching network was implemented at the National Physical Laboratories in the United Kingdom. It was quickly followed by the ARPANET in 1969.
Significant aspects of the network's internal operation, such as routing, flow control, software design, and network control were developed by a BBN team consisting of Frank Heart, Robert Kahn, Severo Omstein, William Crowther, and David Walden
Roger Scantlebury was one of the major players. And Donald Davies who ran, at least he was superintendent of the information systems division or something like that. I absolutely had a lot of interaction with NPL at the time. They in fact came to the ICCC 72 and they had been coming to previous meetings of what is now called Datacomm. Its first incarnation was a long title having to do with the analysis and optimization of computer communication networks, or something like that. This started in late 1969, I think, was when the first meeting happened in Pine Hill, Georgia. I didn't go to that one, but I went to the next one that was at Stanford, I think. That's where I met Scantlebury, I believe, for the first time. Then I had a lot more interaction with him. I would come to the UK fairly regularly, partly for IFIP or INWG reasons
But the ARPANET itself had now become an island, with no links to the other networks that had sprung up. By the early 1970s, researchers in France, the UK, and the U.S. began developing ways of connecting networks to each other, a process known as internetworking.
This was the first digital local network in the world to use packet switching and high-speed links.
The system first went 'live' early in 1969
The feasibility studies continued with an attempt to apply queuing theory to study overall network performance. This proved to be intractable so we quickly turned to simulation.
Both Paul Baran and Donald Davies in their original papers anticipated the use of T1 trunks
Significant aspects of the network's internal operation, such as routing, flow control, software design, and network control were developed by a BBN team consisting of Frank Heart, Robert Kahn, Severo Omstein, William Crowther, and David Walden
In nearly all respects, Davies' original proposal, developed in late 1965, was similar to the actual networks being built today.
In 1965, Davies pioneered new concepts for computer communications in a form to which he gave the name "packet switching." ... The design of the ARPA network (ArpaNet) was entirely changed to adopt this technique.; "A Flaw In The Design". The Washington Post. 30 May 2015.
The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
Then in June 1966, Davies wrote a second internal paper, "Proposal for a Digital Communication Network" In which he coined the word packet,- a small sub part of the message the user wants to send, and also introduced the concept of an "Interface computer" to sit between the user equipment and the packet network.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)The system first went 'live' early in 1969
The feasibility studies continued with an attempt to apply queuing theory to study overall network performance. This proved to be intractable so we quickly turned to simulation.
The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
But the ARPANET itself had now become an island, with no links to the other networks that had sprung up. By the early 1970s, researchers in France, the UK, and the U.S. began developing ways of connecting networks to each other, a process known as internetworking.
We began doing concurrent implementations at Stanford, BBN, and University College London. So effort at developing the Internet protocols was international from the beginning.
In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."
Roger actually convinced Larry that what he was talking about was all wrong and that the way that NPL were proposing to do it was right. I've got some notes that say that first Larry was sceptical but several of the others there sided with Roger and eventually Larry was overwhelmed by the numbers.
There had been a paper written by [Paul Baran] from the Rand Corporation which, in a sense, foreshadowed packet switching in a way for speech networks and voice networks
This was the first digital local network in the world to use packet switching and high-speed links.
Paul Baran ... focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.