De Fraja, G.; Oliveira, T.; Zanchi, L. (2010). "Must Try Harder: Evaluating the Role of Effort in Educational Attainment". Review of Economics and Statistics. 92 (3): 577. doi:10.1162/REST_a_00013. hdl:2108/55644. S2CID57072280.
B. D. Bernheim; B. Peleg; M. D. Whinston (1987), "Coalition-Proof Equilibria I. Concepts", Journal of Economic Theory, 42 (1): 1–12, doi:10.1016/0022-0531(87)90099-8.
Rosenthal, Robert W. (1973). "A class of games possessing pure-strategy Nash equilibria". International Journal of Game Theory. 2 (1): 65–67. doi:10.1007/BF01763781.
Edmonds, Jack; Fulkerson, Delbert Ray (1970). "Bottleneck extrema". J. Of Combinatorial Theory. 8 (3): 299–306. doi:10.1016/S0021-9800(70)80083-7.
Gurvich, Vladimir; Naumova, Mariya (2024). "Lexicographically maximal edges of dual hypergraphs and Nash-solvability of tight game forms". Annals of Mathematics and Artificial Intelligence. 92 (1): 49–57. doi:10.1007/s10472-022-09820-3.
De Fraja, G.; Oliveira, T.; Zanchi, L. (2010). "Must Try Harder: Evaluating the Role of Effort in Educational Attainment". Review of Economics and Statistics. 92 (3): 577. doi:10.1162/REST_a_00013. hdl:2108/55644. S2CID57072280.
T. L. Turocy, B. Von Stengel, Game Theory, copyright 2001, Texas A&M University, London School of Economics, pages 141-144. Nash proved that a perfect NE exists for this type of finite extensive form game[citation needed] – it can be represented as a strategy complying with his original conditions for a game with a NE. Such games may not have unique NE, but at least one of the many equilibrium strategies would be played by hypothetical players having perfect knowledge of all 10150game trees[citation needed].
De Fraja, G.; Oliveira, T.; Zanchi, L. (2010). "Must Try Harder: Evaluating the Role of Effort in Educational Attainment". Review of Economics and Statistics. 92 (3): 577. doi:10.1162/REST_a_00013. hdl:2108/55644. S2CID57072280.