Nonhypotenuse number (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Nonhypotenuse number" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
26th place
20th place
6th place
6th place

ams.org

mathscinet.ams.org

  • D. S.; Beiler, Albert H. (1968), "Albert Beiler, Consecutive Hypotenuses of Pythagorean Triangles", Mathematics of Computation, 22 (103): 690–692, doi:10.2307/2004563, JSTOR 2004563. This review of a manuscript of Beiler's (which was later published in J. Rec. Math. 7 (1974) 120–133, MR0422125) attributes this bound to Landau.
  • Shanks, D. (1975), "Non-hypotenuse numbers", Fibonacci Quarterly, 13 (4): 319–321, doi:10.1080/00150517.1975.12430618, MR 0387219.
  • Dobkin, David; Lipton, Richard J. (1980), "Addition chain methods for the evaluation of specific polynomials", SIAM Journal on Computing, 9 (1): 121–125, doi:10.1137/0209011, MR 0557832

archive.org

doi.org

  • D. S.; Beiler, Albert H. (1968), "Albert Beiler, Consecutive Hypotenuses of Pythagorean Triangles", Mathematics of Computation, 22 (103): 690–692, doi:10.2307/2004563, JSTOR 2004563. This review of a manuscript of Beiler's (which was later published in J. Rec. Math. 7 (1974) 120–133, MR0422125) attributes this bound to Landau.
  • Shanks, D. (1975), "Non-hypotenuse numbers", Fibonacci Quarterly, 13 (4): 319–321, doi:10.1080/00150517.1975.12430618, MR 0387219.
  • Dobkin, David; Lipton, Richard J. (1980), "Addition chain methods for the evaluation of specific polynomials", SIAM Journal on Computing, 9 (1): 121–125, doi:10.1137/0209011, MR 0557832

jstor.org

  • D. S.; Beiler, Albert H. (1968), "Albert Beiler, Consecutive Hypotenuses of Pythagorean Triangles", Mathematics of Computation, 22 (103): 690–692, doi:10.2307/2004563, JSTOR 2004563. This review of a manuscript of Beiler's (which was later published in J. Rec. Math. 7 (1974) 120–133, MR0422125) attributes this bound to Landau.