Analysis of information sources in references of the Wikipedia article "Orbital propellant depot" in English language version.
more than 40 different types of fueling systems ... SIS will be carrying enough tools to open 75 percent of the fueling systems aboard satellites now in geostationary orbit. ... the SIS spacecraft is designed to operate for seven years in orbit but that it is likely to be able to operate far longer than that. Key to the business model is MDA's ability to launch replacement fuel canisters that would be grappled by SIS and used to refuel dozens of satellites over a period of years. These canisters would be much lighter than the SIS vehicle and thus much less expensive to launch.
the refueling vehicle would dock at the target satellite's apogee-kick motor, peel off a section of the craft's thermal protection blanket, connect to a fuel-pressure line and deliver the propellant. MDA officials estimate the docking maneuver would take the communications satellite out of service for about 20 minutes. ... The servicing robot would have an in-orbit life of about five years, and would carry enough fuel to perform 10 or 11 satellite-refueling or orbital-cleanup missions.
if the MDA spacecraft performs as planned, Intelsat will be paying a total of some $200 million to MDA. This assumes that four or five satellites are given around 200 kilograms each of fuel. ... The maiden flight of the vehicle would be on an International Launch Services Proton rocket, industry officials said. One official said the MDA spacecraft, including its 2,000 kilograms of refueling propellant, is likely to weigh around 6,000 kilograms at launch.
ViviSat, a new 50-50 joint venture of U.S. Space and ATK, is marketing a satellite-refueling spacecraft that connects to a target spacecraft using the same probe-in-the-kick-motor approach as MDA, but does not transfer its fuel. Instead, the vehicle becomes a new fuel tank, using its own thrusters to supply attitude control for the target. ... [the ViviSat] concept is not as far along as MDA.
{{cite web}}
: CS1 maint: location (link)MDA plans to launch its Space Infrastructure Servicing ("SIS") vehicle into near geosynchronous orbit, where it will service commercial and government satellites in need of additional fuel, re-positioning or other maintenance. ... MDA and Intelsat will work together to finalize specifications and other requirements over the next six months before both parties authorize the build phase of the program. The first refueling mission is to be available 3.5 years following the commencement of the build phase. ... The services provided by MDA to Intelsat under this agreement are valued at more than US$280 million.
So it is a bit tricky. Because we have to figure out how to improve the cost of the trips to Mars by five million percent ... translates to an improvement of approximately 4 1/2 orders of magnitude. These are the key elements that are needed in order to achieve a 4 1/2 order of magnitude improvement. Most of the improvement would come from full reusability—somewhere between 2 and 2 1/2 orders of magnitude—and then the other 2 orders of magnitude would come from refilling in orbit, propellant production on Mars, and choosing the right propellant.
{{cite AV media}}
: CS1 maint: location (link)a LO2/LH2 PTSD (Propellant Transfer and Storage Demonstration) mission by 2015. ... it would be launched on an Atlas 551 ... [which] would provide ~12 mT of Centaur residuals (combined LH2 and LO2) in a 28.5 degrees by 200 nm circular LEO.
the refueling vehicle would dock at the target satellite's apogee-kick motor, peel off a section of the craft's thermal protection blanket, connect to a fuel-pressure line and deliver the propellant. MDA officials estimate the docking maneuver would take the communications satellite out of service for about 20 minutes. ... The servicing robot would have an in-orbit life of about five years, and would carry enough fuel to perform 10 or 11 satellite-refueling or orbital-cleanup missions.
if the MDA spacecraft performs as planned, Intelsat will be paying a total of some $200 million to MDA. This assumes that four or five satellites are given around 200 kilograms each of fuel. ... The maiden flight of the vehicle would be on an International Launch Services Proton rocket, industry officials said. One official said the MDA spacecraft, including its 2,000 kilograms of refueling propellant, is likely to weigh around 6,000 kilograms at launch.
more than 40 different types of fueling systems ... SIS will be carrying enough tools to open 75 percent of the fueling systems aboard satellites now in geostationary orbit. ... the SIS spacecraft is designed to operate for seven years in orbit but that it is likely to be able to operate far longer than that. Key to the business model is MDA's ability to launch replacement fuel canisters that would be grappled by SIS and used to refuel dozens of satellites over a period of years. These canisters would be much lighter than the SIS vehicle and thus much less expensive to launch.
ACES design conceptualization has been underway at ULA for many years. It leverages design features of both the Centaur and Delta Cryogenic Second Stage (DCSS) upper stages and intends to supplement and perhaps replace these stages in the future. The baseline ACES will contain twice the Centaur or 4m DCSS propellant load, providing a significant performance boost compared to our existing upper stages. The baseline 41-mT propellant load is contained in a 5m diameter, common bulkhead stage that is about the same length as ULA's existing upper stages. ACES will become the foundation for a modular system of stages to meet the launch requirements of a wide variety of users. A common variant is a stretched version containing 73t of propellant.
the waste hydrogen that has boiled off happens to be the best known propellant (as a monopropellant in a basic solar-thermal propulsion system) for this task. A practical depot must evolve hydrogen at a minimum rate that matches the station keeping demands.
{{cite web}}
: CS1 maint: location (link)ACES design conceptualization has been underway at ULA for many years. It leverages design features of both the Centaur and Delta Cryogenic Second Stage (DCSS) upper stages and intends to supplement and perhaps replace these stages in the future. The baseline ACES will contain twice the Centaur or 4m DCSS propellant load, providing a significant performance boost compared to our existing upper stages. The baseline 41-mT propellant load is contained in a 5m diameter, common bulkhead stage that is about the same length as ULA's existing upper stages. ACES will become the foundation for a modular system of stages to meet the launch requirements of a wide variety of users. A common variant is a stretched version containing 73t of propellant.
a LO2/LH2 PTSD (Propellant Transfer and Storage Demonstration) mission by 2015. ... it would be launched on an Atlas 551 ... [which] would provide ~12 mT of Centaur residuals (combined LH2 and LO2) in a 28.5 degrees by 200 nm circular LEO.
the waste hydrogen that has boiled off happens to be the best known propellant (as a monopropellant in a basic solar-thermal propulsion system) for this task. A practical depot must evolve hydrogen at a minimum rate that matches the station keeping demands.
MDA plans to launch its Space Infrastructure Servicing ("SIS") vehicle into near geosynchronous orbit, where it will service commercial and government satellites in need of additional fuel, re-positioning or other maintenance. ... MDA and Intelsat will work together to finalize specifications and other requirements over the next six months before both parties authorize the build phase of the program. The first refueling mission is to be available 3.5 years following the commencement of the build phase. ... The services provided by MDA to Intelsat under this agreement are valued at more than US$280 million.
So it is a bit tricky. Because we have to figure out how to improve the cost of the trips to Mars by five million percent ... translates to an improvement of approximately 4 1/2 orders of magnitude. These are the key elements that are needed in order to achieve a 4 1/2 order of magnitude improvement. Most of the improvement would come from full reusability—somewhere between 2 and 2 1/2 orders of magnitude—and then the other 2 orders of magnitude would come from refilling in orbit, propellant production on Mars, and choosing the right propellant.
{{cite AV media}}
: CS1 maint: location (link)