Orbital propellant depot (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Orbital propellant depot" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
75th place
83rd place
1,876th place
1,225th place
low place
low place
2nd place
2nd place
916th place
706th place
8,446th place
6,634th place
low place
low place
18th place
17th place
1,181st place
736th place
14th place
14th place
102nd place
76th place
2,930th place
2,204th place
9th place
13th place
low place
low place
low place
low place
936th place
713th place
low place
7,505th place
low place
low place
9,412th place
6,528th place
910th place
593rd place
137th place
101st place
32nd place
21st place
6,194th place
5,551st place
low place
low place
low place
low place
low place
low place
low place
low place
low place
6,717th place
low place
low place
2,428th place
1,659th place
5,717th place
4,364th place
1,290th place
1,111th place
2,838th place
2,185th place
120th place
125th place
5,173rd place
5,110th place
low place
low place
low place
8,786th place

adastrarocket.com

archive-it.org

wayback.archive-it.org

archive.today

  • de Selding, Peter B. (March 18, 2011). "Intelsat Signs Up for MDA's Satellite Refueling Service". Space News. Archived from the original on March 21, 2012. Retrieved March 20, 2011. more than 40 different types of fueling systems ... SIS will be carrying enough tools to open 75 percent of the fueling systems aboard satellites now in geostationary orbit. ... the SIS spacecraft is designed to operate for seven years in orbit but that it is likely to be able to operate far longer than that. Key to the business model is MDA's ability to launch replacement fuel canisters that would be grappled by SIS and used to refuel dozens of satellites over a period of years. These canisters would be much lighter than the SIS vehicle and thus much less expensive to launch.
  • de Selding, Peter B. (March 3, 2010). "MDA Designing In-orbit Servicing Spacecraft". Space News. Archived from the original on January 5, 2013. Retrieved March 14, 2011. the refueling vehicle would dock at the target satellite's apogee-kick motor, peel off a section of the craft's thermal protection blanket, connect to a fuel-pressure line and deliver the propellant. MDA officials estimate the docking maneuver would take the communications satellite out of service for about 20 minutes. ... The servicing robot would have an in-orbit life of about five years, and would carry enough fuel to perform 10 or 11 satellite-refueling or orbital-cleanup missions.
  • de Selding, Peter B. (March 14, 2011). "Intelsat Signs Up for Satellite Refueling Service". Space News. Archived from the original on May 24, 2012. Retrieved March 15, 2011. if the MDA spacecraft performs as planned, Intelsat will be paying a total of some $200 million to MDA. This assumes that four or five satellites are given around 200 kilograms each of fuel. ... The maiden flight of the vehicle would be on an International Launch Services Proton rocket, industry officials said. One official said the MDA spacecraft, including its 2,000 kilograms of refueling propellant, is likely to weigh around 6,000 kilograms at launch.

aviationweek.com

  • Warwick, Graham (August 10, 2011). "ULA Proposes On-Orbit Gas Stations for Space Exploration". Aviation Week. Retrieved September 11, 2011.[permanent dead link]
  • Morring, Frank Jr. (August 10, 2011). "NASA To Study Cryo Storage In Space". Aviation Week. Retrieved September 11, 2011.[permanent dead link]
  • Morring, Frank Jr. (March 22, 2011). "An End To Space Trash?". Aviation Week. Retrieved March 21, 2011. ViviSat, a new 50-50 joint venture of U.S. Space and ATK, is marketing a satellite-refueling spacecraft that connects to a target spacecraft using the same probe-in-the-kick-motor approach as MDA, but does not transfer its fuel. Instead, the vehicle becomes a new fuel tank, using its own thrusters to supply attitude control for the target. ... [the ViviSat] concept is not as far along as MDA.

boeing.com

cammpus.s3.amazonaws.com

  • Pittman, Bruce; Rasky, Dan; Harper, Lynn (2012). "Infrastructure Based Exploration – An Affordable Path To Sustainable Space Development" (PDF). IAC – 12, D3, 2, 4, x14203: IAC. Archived (PDF) from the original on March 21, 2016. Retrieved October 14, 2014.{{cite web}}: CS1 maint: location (link)

canadanewswire.ca

  • "Intelsat Picks MacDonald, Dettwiler and Associates Ltd. for Satellite Servicing". press release. CNW Group. Archived from the original on May 12, 2011. Retrieved March 15, 2011. MDA plans to launch its Space Infrastructure Servicing ("SIS") vehicle into near geosynchronous orbit, where it will service commercial and government satellites in need of additional fuel, re-positioning or other maintenance. ... MDA and Intelsat will work together to finalize specifications and other requirements over the next six months before both parties authorize the build phase of the program. The first refueling mission is to be available 3.5 years following the commencement of the build phase. ... The services provided by MDA to Intelsat under this agreement are valued at more than US$280 million.

competitivespace.org

doi.org

futurism.com

ghostarchive.org

  • Elon Musk (September 27, 2016). Making Humans a Multiplanetary Species (video). IAC67, Guadalajara, Mexico: SpaceX. Event occurs at 9:20–10:10. Archived from the original on December 20, 2021. Retrieved October 18, 2016. So it is a bit tricky. Because we have to figure out how to improve the cost of the trips to Mars by five million percent ... translates to an improvement of approximately 4 1/2 orders of magnitude. These are the key elements that are needed in order to achieve a 4 1/2 order of magnitude improvement. Most of the improvement would come from full reusability—somewhere between 2 and 2 1/2 orders of magnitude—and then the other 2 orders of magnitude would come from refilling in orbit, propellant production on Mars, and choosing the right propellant.{{cite AV media}}: CS1 maint: location (link)

hackaday.com

handle.net

hdl.handle.net

  • Thunnissen, Daniel P.; Guernsey, C. S.; Baker, R. S.; Miyake, R. N. (July 2004). Advanced Space Storable Propellants for Outer Planet Exploration. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Ft. Lauderdale, Florida, July 11–14, 2004. hdl:2014/37950. AIAA 2004-0799.
  • Kutter, Bernard F.; et al. (September 9–11, 2008). "A Practical, Affordable Cryogenic Propellant Depot Based on ULA's Flight Experience". AIAA SPACE 2008 Conference & Exposition. AIAA SPACE 2008 Conference & Exposition. San Diego, California: AIAA. doi:10.2514/6.2008-7644. hdl:2060/20130010201. ISBN 978-1-62410-002-4.

harvard.edu

ui.adsabs.harvard.edu

hobbyspace.com

mtu.edu

digitalcommons.mtu.edu

nasa.gov

nasa.gov

ntrs.nasa.gov

science.nasa.gov

grc.nasa.gov

nasaspaceflight.com

  • Bergin, Chris (August 10, 2011). "NASA interest in an interplanetary highway supported by Propellant Depots". NASA Spaceflight. Archived from the original on August 12, 2011. Retrieved August 11, 2011. a LO2/LH2 PTSD (Propellant Transfer and Storage Demonstration) mission by 2015. ... it would be launched on an Atlas 551 ... [which] would provide ~12 mT of Centaur residuals (combined LH2 and LO2) in a 28.5 degrees by 200 nm circular LEO.

nbcnews.com

researchgate.net

sei.aero

selenianboondocks.com

space.com

spaceflightinsider.com

spaceflightnow.com

spacenews.com

spacenews.com

  • Foust, Jeff (April 16, 2021). "NASA selects SpaceX to develop crewed lunar lander". SpaceNews. Archived from the original on May 21, 2021. Retrieved April 18, 2021.
  • de Selding, Peter B. (March 3, 2010). "MDA Designing In-orbit Servicing Spacecraft". Space News. Archived from the original on January 5, 2013. Retrieved March 14, 2011. the refueling vehicle would dock at the target satellite's apogee-kick motor, peel off a section of the craft's thermal protection blanket, connect to a fuel-pressure line and deliver the propellant. MDA officials estimate the docking maneuver would take the communications satellite out of service for about 20 minutes. ... The servicing robot would have an in-orbit life of about five years, and would carry enough fuel to perform 10 or 11 satellite-refueling or orbital-cleanup missions.
  • de Selding, Peter B. (March 14, 2011). "Intelsat Signs Up for Satellite Refueling Service". Space News. Archived from the original on May 24, 2012. Retrieved March 15, 2011. if the MDA spacecraft performs as planned, Intelsat will be paying a total of some $200 million to MDA. This assumes that four or five satellites are given around 200 kilograms each of fuel. ... The maiden flight of the vehicle would be on an International Launch Services Proton rocket, industry officials said. One official said the MDA spacecraft, including its 2,000 kilograms of refueling propellant, is likely to weigh around 6,000 kilograms at launch.
  • Henry, Caleb (June 29, 2017). "MDA restarts satellite servicing business with SES as first customer". SpaceNews. Archived from the original on October 1, 2021. Retrieved July 15, 2019.
  • Foust, Jeff (March 13, 2015). "Lockheed Martin Pitches Reusable Tug for Space Station Resupply". Space News. Archived from the original on October 1, 2021. Retrieved March 21, 2015.
  • Foust, Jeff (November 6, 2018). "Orbit Fab to test refueling technology on ISS". SpaceNews. Archived from the original on October 1, 2021. Retrieved March 28, 2019.

sbv.spacenews.com

  • de Selding, Peter B. (March 18, 2011). "Intelsat Signs Up for MDA's Satellite Refueling Service". Space News. Archived from the original on March 21, 2012. Retrieved March 20, 2011. more than 40 different types of fueling systems ... SIS will be carrying enough tools to open 75 percent of the fueling systems aboard satellites now in geostationary orbit. ... the SIS spacecraft is designed to operate for seven years in orbit but that it is likely to be able to operate far longer than that. Key to the business model is MDA's ability to launch replacement fuel canisters that would be grappled by SIS and used to refuel dozens of satellites over a period of years. These canisters would be much lighter than the SIS vehicle and thus much less expensive to launch.

spaceref.com

images.spaceref.com

spacex.com

spudislunarresources.com

strategypage.com

thespaceshow.com

thinkquest.org

library.thinkquest.org

tmcnet.com

satellite.tmcnet.com

ulalaunch.com

  • Zegler, Frank; Kutter, Bernard (September 2, 2010). Evolving to a Depot-Based Space Transportation Architecture (PDF). AIAA SPACE 2010 Conference & Exposition. American Institute of Aeronautics and Astronautics. Archived from the original (PDF) on June 24, 2014. Retrieved October 31, 2016. ACES design conceptualization has been underway at ULA for many years. It leverages design features of both the Centaur and Delta Cryogenic Second Stage (DCSS) upper stages and intends to supplement and perhaps replace these stages in the future. The baseline ACES will contain twice the Centaur or 4m DCSS propellant load, providing a significant performance boost compared to our existing upper stages. The baseline 41-mT propellant load is contained in a 5m diameter, common bulkhead stage that is about the same length as ULA's existing upper stages. ACES will become the foundation for a modular system of stages to meet the launch requirements of a wide variety of users. A common variant is a stretched version containing 73t of propellant.
  • Successful Flight Demonstration Conducted by the Air Force and United Launch Alliance Will Enhance Space Transportation: DMSP-18, United Launch Alliance, October 2009, accessed January 10, 2011. Archived July 17, 2011, at the Wayback Machine.
  • Zegler, Frank; Kutter, Bernard (September 2, 2010). "Evolving to a Depot-Based Space Transportation Architecture" (PDF). AIAA SPACE 2010 Conference & Exposition. AIAA. p. 3. Archived from the original (PDF) on July 17, 2011. Retrieved January 25, 2011. the waste hydrogen that has boiled off happens to be the best known propellant (as a monopropellant in a basic solar-thermal propulsion system) for this task. A practical depot must evolve hydrogen at a minimum rate that matches the station keeping demands.

usra.edu

lpi.usra.edu

utexas.edu

spirit.as.utexas.edu

web.archive.org

youtube.com

  • Elon Musk (September 27, 2016). Making Humans a Multiplanetary Species (video). IAC67, Guadalajara, Mexico: SpaceX. Event occurs at 9:20–10:10. Archived from the original on December 20, 2021. Retrieved October 18, 2016. So it is a bit tricky. Because we have to figure out how to improve the cost of the trips to Mars by five million percent ... translates to an improvement of approximately 4 1/2 orders of magnitude. These are the key elements that are needed in order to achieve a 4 1/2 order of magnitude improvement. Most of the improvement would come from full reusability—somewhere between 2 and 2 1/2 orders of magnitude—and then the other 2 orders of magnitude would come from refilling in orbit, propellant production on Mars, and choosing the right propellant.{{cite AV media}}: CS1 maint: location (link)
  • "Seeker – YouTube". www.youtube.com. Retrieved May 15, 2024.