Otto Hölder (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Otto Hölder" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
4,501st place
3,002nd place
1,547th place
1,410th place
3rd place
3rd place
6th place
6th place
11th place
8th place

ams.org

mathscinet.ams.org

  • Elbert, Árpád; Garay, Barnabás M. (2006), "Differential equations: Hungary, the extended first half of the 20th century", in Horváth, János (ed.), A Panorama of Hungarian Mathematics in the Twentieth Century, I, Bolyai Soc. Math. Stud., vol. 14, Springer, Berlin, pp. 245–294, doi:10.1007/978-3-540-30721-1_9, ISBN 978-3-540-28945-6, MR 2547513; see p. 248
  • Maligranda, Lech (1998), "Why Hölder's inequality should be called Rogers' inequality", Mathematical Inequalities & Applications, 1 (1): 69–83, doi:10.7153/mia-01-05, MR 1492911
  • Guessab, A.; Schmeisser, G. (2013), "Necessary and sufficient conditions for the validity of Jensen's inequality", Archiv der Mathematik, 100 (6): 561–570, doi:10.1007/s00013-013-0522-3, MR 3069109, S2CID 56372266, under the additional assumption that exists, this inequality was already obtained by Hölder in 1889

archive.org

books.google.com

  • Elbert, Árpád; Garay, Barnabás M. (2006), "Differential equations: Hungary, the extended first half of the 20th century", in Horváth, János (ed.), A Panorama of Hungarian Mathematics in the Twentieth Century, I, Bolyai Soc. Math. Stud., vol. 14, Springer, Berlin, pp. 245–294, doi:10.1007/978-3-540-30721-1_9, ISBN 978-3-540-28945-6, MR 2547513; see p. 248

doi.org

  • Elbert, Árpád; Garay, Barnabás M. (2006), "Differential equations: Hungary, the extended first half of the 20th century", in Horváth, János (ed.), A Panorama of Hungarian Mathematics in the Twentieth Century, I, Bolyai Soc. Math. Stud., vol. 14, Springer, Berlin, pp. 245–294, doi:10.1007/978-3-540-30721-1_9, ISBN 978-3-540-28945-6, MR 2547513; see p. 248
  • Maligranda, Lech (1998), "Why Hölder's inequality should be called Rogers' inequality", Mathematical Inequalities & Applications, 1 (1): 69–83, doi:10.7153/mia-01-05, MR 1492911
  • Guessab, A.; Schmeisser, G. (2013), "Necessary and sufficient conditions for the validity of Jensen's inequality", Archiv der Mathematik, 100 (6): 561–570, doi:10.1007/s00013-013-0522-3, MR 3069109, S2CID 56372266, under the additional assumption that exists, this inequality was already obtained by Hölder in 1889

mathgenealogy.org

semanticscholar.org

api.semanticscholar.org

st-andrews.ac.uk

mathshistory.st-andrews.ac.uk

  • O'Connor, John J.; Robertson, Edmund F., "Otto Hölder", MacTutor History of Mathematics Archive, University of St Andrews