Parallel (operator) (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Parallel (operator)" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
2nd place
2nd place
3rd place
3rd place
70th place
63rd place
120th place
125th place
1,669th place
1,290th place
low place
low place
43rd place
161st place
1,564th place
1,028th place
6th place
6th place
4,228th place
2,818th place
low place
low place
low place
9,569th place
5th place
5th place
low place
low place
580th place
462nd place
207th place
136th place
low place
low place
low place
low place
4,043rd place
6,524th place
26th place
20th place
1,734th place
1,312th place
274th place
309th place
11th place
8th place
652nd place
515th place
576th place
352nd place
415th place
327th place
low place
low place
121st place
142nd place
low place
low place
low place
low place

academia.edu

archive.org

berkeley.edu

inst.eecs.berkeley.edu

  • Ranade, Gireeja; Stojanovic, Vladimir, eds. (Fall 2018). "Chapter 15.7.2 Parallel Resistors" (PDF). EECS 16A Designing Information Devices and Systems I (PDF) (lecture notes). University of California, Berkeley. p. 12. Note 15. Archived (PDF) from the original on 2018-12-27. Retrieved 2018-12-28. p. 12: […] This mathematical relationship comes up often enough that it actually has a name: the "parallel operator", denoted ∥. When we say x∥y, it means . Note that this is a mathematical operator and does not say anything about the actual configuration. In the case of resistors the parallel operator is used for parallel resistors, but for other components (like capacitors) this is not the case. […] (16 pages)

books.google.com

cmu.edu

kilthub.cmu.edu

  • Duffin, Richard James (1971) [1970, 1969]. "Network Models". Written at Durham, North Carolina, USA. In Wilf, Herbert Saul; Hararay, Frank (eds.). Mathematical Aspects of Electrical Network Analysis. Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics held in New York City, 1969-04-02/03. Vol. III of SIAM-AMS Proceedings (illustrated ed.). Providence, Rhode Island: American Mathematical Society (AMS) / Society for Industrial and Applied Mathematics (SIAM). pp. 65–92 [68]. ISBN 0-8218-1322-6. ISSN 0080-5084. LCCN 79-167683. ISBN 978-0-8218-1322-5. Report 69-21. Retrieved 2019-08-05. pp. 68–69: […] To have a convenient short notation for the joint resistance of resistors connected in parallel let […] A:B = AB/(A+B) […] A:B may be regarded as a new operation termed parallel addition […] Parallel addition is defined for any nonnegative numbers. The network model shows that parallel addition is commutative and associative. Moreover, multiplication is distributive over this operation. Consider now an algebraic expression in the operations (+) and (:) operating on positive numbers A, B, C, etc. […] To give a network interpretation of such a polynomial read A + B as "A series B" and A : B as "A parallel B" then it is clear that the expression […] is the joint resistance of the network […] [1] [2] (206 pages)
  • Anderson, Jr., William Niles; Duffin, Richard James (1969) [1968-05-27]. "Series and parallel addition of matrices". Journal of Mathematical Analysis and Applications. 26 (3). Academic Press, Inc.: 576–594. doi:10.1016/0022-247X(69)90200-5. p. 576: […] we define the parallel sum of A and B by the formula A(A + B)+B and denote it by A : B. If A and B are nonsingular this reduces to A : B = (A−1 + B−1)−1 which is the well known electrical formula for addition of resistors in parallel. Then it is shown that the Hermitian semi-definite matrices form a commutative partially ordered semigroup under the parallel sum operation. […] [6]

core.ac.uk

doi.org

ed.gov

files.eric.ed.gov

ellerman.org

gitlab.com

hpmuseum.org

ieee.org

ieeexplore.ieee.org

  • Senturia, Stephen D. [at Wikidata]; Wedlock, Bruce D. (1975) [August 1974]. "Part A. Learning the Language, Chapter 3. Linear Resistive Networks, 3.2 Basic Network Configurations, 3.2.3. Resistors in Parallel". Written at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Electronic Circuits and Applications (1 ed.). New York, London, Sydney, Toronto: John Wiley & Sons, Inc. pp. viii–ix, 44–46 [45]. ISBN 0-471-77630-0. LCCN 74-7404. S2CID 61070327. pp. viii, ix, 45: This textbook evolved from a one-semester introductory electronics course taught by the authors at the Massachusetts Institute of Technology. […] The course is used by many freshmen as a precursor to the MIT Electrical Engineering Core Program. […] The preparation of a book of this size has drawn on the contribution of many people. The concept of teaching network theory and electronics as a single unified subject derives from Professor Campbell Searle, who taught the introductory electronics course when one of us (S.D.S.) was a first-year physics graduate student trying to learn electronics. In addition, Professor Searle has provided invaluable constructive criticism throughout the writing of this text. Several members of the MIT faculty and nearly 40 graduate technical assistants have participated in the teaching of this material over the past five years, many of whom have made important contributions through their suggestions and examples. Among these, we especially wish to thank O. R. Mitchell, Irvin Englander, George Lewis, Ernest Vincent, David James, Kenway Wong, Gim Hom, Tom Davis, James Kirtley, and Robert Donaghey. The chairman of the MIT Department of Electrical Engineering, Professor Louis D. Smullin, has provided support and encouragement during this project, as have many colleagues throughout the department. […] The first result […] states that the total voltage across the parallel combination of R1 and R2 is the same as that which occurs across a single resistance of value R1 R2 (R1 + R2). Because this expression for parallel resistance occurs so often, it is given a special notation (R1∥R2). That is, when R1 and R2 are in parallel, the equivalent resistance is […] (xii+623+5 pages) (NB. A teacher's manual was available as well. Early print runs contains a considerable number of typographical errors. See also: Wedlock's 1978 book.) [7]

instructure.com

utah.instructure.com

jstor.org

loc.gov

lccn.loc.gov

  • Duffin, Richard James (1971) [1970, 1969]. "Network Models". Written at Durham, North Carolina, USA. In Wilf, Herbert Saul; Hararay, Frank (eds.). Mathematical Aspects of Electrical Network Analysis. Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics held in New York City, 1969-04-02/03. Vol. III of SIAM-AMS Proceedings (illustrated ed.). Providence, Rhode Island: American Mathematical Society (AMS) / Society for Industrial and Applied Mathematics (SIAM). pp. 65–92 [68]. ISBN 0-8218-1322-6. ISSN 0080-5084. LCCN 79-167683. ISBN 978-0-8218-1322-5. Report 69-21. Retrieved 2019-08-05. pp. 68–69: […] To have a convenient short notation for the joint resistance of resistors connected in parallel let […] A:B = AB/(A+B) […] A:B may be regarded as a new operation termed parallel addition […] Parallel addition is defined for any nonnegative numbers. The network model shows that parallel addition is commutative and associative. Moreover, multiplication is distributive over this operation. Consider now an algebraic expression in the operations (+) and (:) operating on positive numbers A, B, C, etc. […] To give a network interpretation of such a polynomial read A + B as "A series B" and A : B as "A parallel B" then it is clear that the expression […] is the joint resistance of the network […] [1] [2] (206 pages)
  • Cajori, Florian (1993) [September 1928]. "§ 184, § 359, § 368". A History of Mathematical Notations – Notations in Elementary Mathematics. Vol. 1 (two volumes in one unaltered reprint ed.). Chicago, US: Open court publishing company. pp. 193, 402–403, 411–412. ISBN 0-486-67766-4. LCCN 93-29211. Retrieved 2019-07-22. pp. 402–403, 411–412: §359. […] ∥ for parallel occurs in Oughtred's Opuscula mathematica hactenus inedita (1677) [p. 197], a posthumous work (§ 184) […] §368. Signs for parallel lines. […] when Recorde's sign of equality won its way upon the Continent, vertical lines came to be used for parallelism. We find ∥ for "parallel" in Kersey,[A] Caswell, Jones,[B] Wilson,[C] Emerson,[D] Kambly,[E] and the writers of the last fifty years who have been already quoted in connection with other pictographs. Before about 1875 it does not occur as often […] Hall and Stevens[F] use "par[F] or ∥" for parallel […] [A] John Kersey, Algebra (London, 1673), Book IV, p. 177. [B] W. Jones, Synopsis palmarioum matheseos (London, 1706). [C] John Wilson, Trigonometry (Edinburgh, 1714), characters explained. [D] W. Emerson, Elements of Geometry (London, 1763), p. 4. [E] L. Kambly [de], Die Elementar-Mathematik, Part 2: Planimetrie, 43. edition (Breslau, 1876), p. 8. […] [F] H. S. Hall and F. H. Stevens, Euclid's Elements, Parts I and II (London, 1889), p. 10. […] [3]
  • Basso, Christophe P. (2016). "Chapter 1.1.2 The Current Divider". Linear Circuit Transfer Functions: An Introduction to Fast Analytical Techniques (1 ed.). Chichester, West Sussex, New Jersey, USA: John Wiley & Sons Ltd. p. 12. ISBN 978-1-11923637-5. LCCN 2015047967. Retrieved 2018-12-28. (464 pages)
  • Senturia, Stephen D. [at Wikidata]; Wedlock, Bruce D. (1975) [August 1974]. "Part A. Learning the Language, Chapter 3. Linear Resistive Networks, 3.2 Basic Network Configurations, 3.2.3. Resistors in Parallel". Written at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Electronic Circuits and Applications (1 ed.). New York, London, Sydney, Toronto: John Wiley & Sons, Inc. pp. viii–ix, 44–46 [45]. ISBN 0-471-77630-0. LCCN 74-7404. S2CID 61070327. pp. viii, ix, 45: This textbook evolved from a one-semester introductory electronics course taught by the authors at the Massachusetts Institute of Technology. […] The course is used by many freshmen as a precursor to the MIT Electrical Engineering Core Program. […] The preparation of a book of this size has drawn on the contribution of many people. The concept of teaching network theory and electronics as a single unified subject derives from Professor Campbell Searle, who taught the introductory electronics course when one of us (S.D.S.) was a first-year physics graduate student trying to learn electronics. In addition, Professor Searle has provided invaluable constructive criticism throughout the writing of this text. Several members of the MIT faculty and nearly 40 graduate technical assistants have participated in the teaching of this material over the past five years, many of whom have made important contributions through their suggestions and examples. Among these, we especially wish to thank O. R. Mitchell, Irvin Englander, George Lewis, Ernest Vincent, David James, Kenway Wong, Gim Hom, Tom Davis, James Kirtley, and Robert Donaghey. The chairman of the MIT Department of Electrical Engineering, Professor Louis D. Smullin, has provided support and encouragement during this project, as have many colleagues throughout the department. […] The first result […] states that the total voltage across the parallel combination of R1 and R2 is the same as that which occurs across a single resistance of value R1 R2 (R1 + R2). Because this expression for parallel resistance occurs so often, it is given a special notation (R1∥R2). That is, when R1 and R2 are in parallel, the equivalent resistance is […] (xii+623+5 pages) (NB. A teacher's manual was available as well. Early print runs contains a considerable number of typographical errors. See also: Wedlock's 1978 book.) [7]

mit.edu

libraries.mit.edu

  • Wiesner, Jerome Bert; Johnson, Howard Wesley; Killian, Jr., James Rhyne, eds. (1978-04-11). "School of Engineering – Center for Advanced Engineering Study (C.A.E.S.) – Research and Development – Technical Curriculum Research and Development Project". Report of the President and the Chancellor 1977–78 – Massachusetts Institute of Technology (PDF). Massachusetts Institute of Technology (MIT). pp. 249, 252–253. Archived (PDF) from the original on 2015-09-10. Retrieved 2019-08-08. pp. 249, 252–253: […] The Technical Curriculum Research and Development Program, sponsored by the Imperial Organization of Social Services [fa] of Iran, is entering the fourth year of a five-year contract. Curriculum development in electronics and mechanical engineering continues. […] Administered jointly by C.A.E.S. and the Department of Materials Science and Engineering, the Project is under the supervision of Professor Merton C. Flemings. It is directed by Dr. John W. McWane. […] Curriculum Materials Development. This is the principal activity of the project and is concerned with the development of innovative, state-of-the-art course materials in needed areas of engineering technology […] new introductory course in electronics […] is entitled Introduction to Electronics and Instrumentation and consists of eight […] modules […] dc Current, Voltage, and Resistance; Basic Circuit Networks; Time Varying Signals; Operational Amplifiers; Power Supplies; ac Current, Voltage, and Impedance; Digital Circuits; and Electronic Measurement and Control. This course represents a major change and updating of the way in which electronics is introduced, and should be of great value to STI as well as to many US programs. […]

monoskop.org

psu.edu

citeseerx.ist.psu.edu

researchgate.net

semanticscholar.org

api.semanticscholar.org

  • Senturia, Stephen D. [at Wikidata]; Wedlock, Bruce D. (1975) [August 1974]. "Part A. Learning the Language, Chapter 3. Linear Resistive Networks, 3.2 Basic Network Configurations, 3.2.3. Resistors in Parallel". Written at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Electronic Circuits and Applications (1 ed.). New York, London, Sydney, Toronto: John Wiley & Sons, Inc. pp. viii–ix, 44–46 [45]. ISBN 0-471-77630-0. LCCN 74-7404. S2CID 61070327. pp. viii, ix, 45: This textbook evolved from a one-semester introductory electronics course taught by the authors at the Massachusetts Institute of Technology. […] The course is used by many freshmen as a precursor to the MIT Electrical Engineering Core Program. […] The preparation of a book of this size has drawn on the contribution of many people. The concept of teaching network theory and electronics as a single unified subject derives from Professor Campbell Searle, who taught the introductory electronics course when one of us (S.D.S.) was a first-year physics graduate student trying to learn electronics. In addition, Professor Searle has provided invaluable constructive criticism throughout the writing of this text. Several members of the MIT faculty and nearly 40 graduate technical assistants have participated in the teaching of this material over the past five years, many of whom have made important contributions through their suggestions and examples. Among these, we especially wish to thank O. R. Mitchell, Irvin Englander, George Lewis, Ernest Vincent, David James, Kenway Wong, Gim Hom, Tom Davis, James Kirtley, and Robert Donaghey. The chairman of the MIT Department of Electrical Engineering, Professor Louis D. Smullin, has provided support and encouragement during this project, as have many colleagues throughout the department. […] The first result […] states that the total voltage across the parallel combination of R1 and R2 is the same as that which occurs across a single resistance of value R1 R2 (R1 + R2). Because this expression for parallel resistance occurs so often, it is given a special notation (R1∥R2). That is, when R1 and R2 are in parallel, the equivalent resistance is […] (xii+623+5 pages) (NB. A teacher's manual was available as well. Early print runs contains a considerable number of typographical errors. See also: Wedlock's 1978 book.) [7]

sourceforge.net

springer.com

link.springer.com

st.com

thecalculatorstore.com

  • Dale, Paul; Bonin, Walter (2012-11-30) [2008-12-09]. WP 34S Owner's Manual (PDF) (3.1 ed.). pp. 1, 14, 32, 66, 116. Archived (PDF) from the original on 2019-07-09. Retrieved 2019-07-13. [8] (211 pages)

ti.com

uni-paderborn.de

ei.uni-paderborn.de

web.archive.org

wikibooks.org

en.wikibooks.org

wikidata.org

  • While the use of the symbol ∥ for "parallel" in geometry reaches as far back as 1673 in John Kersey the elder's work,[A] this came into more use only since about 1875.[B] The usage of a mathematical operator for parallel circuits originates from network theory in electrical engineering. Sundaram Seshu introduced a reduced sum operator in 1956,[C] Kent E. Erickson proposed an asterisk (∗) to symbolize the operator in 1959,[D] whilst Richard James Duffin and William Niles Anderson, Jr. used a colon (:) for the parallel addition since 1966.[E] Sujit Kumar Mitra used a middot (∙) for it in 1970.[F] The first usage of the parallel symbol (∥) for this operator in applied electronics is unknown, but might have originated from Stephen D. Senturia [d] and Bruce D. Wedlock's 1974 book "Electronic Circuits and Applications",[G] which evolved from their introductory electronics course at Massachusetts Institute of Technology (MIT) with concepts of teaching network theory and electronics derived from an earlier course taught by Campbell "Cam" Leach Searle. It was further popularized through John W. McWane's 1981 book "Introduction to Electronics and Instrumentation",[H] which grew out of an identically-named MIT course developed as part of the influential Technical Curriculum Development Project between 1974 and 1979. This symbol was probably also introduced because the other used symbols could be easily confused with signs commonly used for multiplication and division in some contexts.
  • Senturia, Stephen D. [at Wikidata]; Wedlock, Bruce D. (1975) [August 1974]. "Part A. Learning the Language, Chapter 3. Linear Resistive Networks, 3.2 Basic Network Configurations, 3.2.3. Resistors in Parallel". Written at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Electronic Circuits and Applications (1 ed.). New York, London, Sydney, Toronto: John Wiley & Sons, Inc. pp. viii–ix, 44–46 [45]. ISBN 0-471-77630-0. LCCN 74-7404. S2CID 61070327. pp. viii, ix, 45: This textbook evolved from a one-semester introductory electronics course taught by the authors at the Massachusetts Institute of Technology. […] The course is used by many freshmen as a precursor to the MIT Electrical Engineering Core Program. […] The preparation of a book of this size has drawn on the contribution of many people. The concept of teaching network theory and electronics as a single unified subject derives from Professor Campbell Searle, who taught the introductory electronics course when one of us (S.D.S.) was a first-year physics graduate student trying to learn electronics. In addition, Professor Searle has provided invaluable constructive criticism throughout the writing of this text. Several members of the MIT faculty and nearly 40 graduate technical assistants have participated in the teaching of this material over the past five years, many of whom have made important contributions through their suggestions and examples. Among these, we especially wish to thank O. R. Mitchell, Irvin Englander, George Lewis, Ernest Vincent, David James, Kenway Wong, Gim Hom, Tom Davis, James Kirtley, and Robert Donaghey. The chairman of the MIT Department of Electrical Engineering, Professor Louis D. Smullin, has provided support and encouragement during this project, as have many colleagues throughout the department. […] The first result […] states that the total voltage across the parallel combination of R1 and R2 is the same as that which occurs across a single resistance of value R1 R2 (R1 + R2). Because this expression for parallel resistance occurs so often, it is given a special notation (R1∥R2). That is, when R1 and R2 are in parallel, the equivalent resistance is […] (xii+623+5 pages) (NB. A teacher's manual was available as well. Early print runs contains a considerable number of typographical errors. See also: Wedlock's 1978 book.) [7]

wikipedia.org

de.wikipedia.org

fi.wikipedia.org

fa.wikipedia.org

  • Wiesner, Jerome Bert; Johnson, Howard Wesley; Killian, Jr., James Rhyne, eds. (1978-04-11). "School of Engineering – Center for Advanced Engineering Study (C.A.E.S.) – Research and Development – Technical Curriculum Research and Development Project". Report of the President and the Chancellor 1977–78 – Massachusetts Institute of Technology (PDF). Massachusetts Institute of Technology (MIT). pp. 249, 252–253. Archived (PDF) from the original on 2015-09-10. Retrieved 2019-08-08. pp. 249, 252–253: […] The Technical Curriculum Research and Development Program, sponsored by the Imperial Organization of Social Services [fa] of Iran, is entering the fourth year of a five-year contract. Curriculum development in electronics and mechanical engineering continues. […] Administered jointly by C.A.E.S. and the Department of Materials Science and Engineering, the Project is under the supervision of Professor Merton C. Flemings. It is directed by Dr. John W. McWane. […] Curriculum Materials Development. This is the principal activity of the project and is concerned with the development of innovative, state-of-the-art course materials in needed areas of engineering technology […] new introductory course in electronics […] is entitled Introduction to Electronics and Instrumentation and consists of eight […] modules […] dc Current, Voltage, and Resistance; Basic Circuit Networks; Time Varying Signals; Operational Amplifiers; Power Supplies; ac Current, Voltage, and Impedance; Digital Circuits; and Electronic Measurement and Control. This course represents a major change and updating of the way in which electronics is introduced, and should be of great value to STI as well as to many US programs. […]

worldcat.org

search.worldcat.org

  • Duffin, Richard James (1971) [1970, 1969]. "Network Models". Written at Durham, North Carolina, USA. In Wilf, Herbert Saul; Hararay, Frank (eds.). Mathematical Aspects of Electrical Network Analysis. Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics held in New York City, 1969-04-02/03. Vol. III of SIAM-AMS Proceedings (illustrated ed.). Providence, Rhode Island: American Mathematical Society (AMS) / Society for Industrial and Applied Mathematics (SIAM). pp. 65–92 [68]. ISBN 0-8218-1322-6. ISSN 0080-5084. LCCN 79-167683. ISBN 978-0-8218-1322-5. Report 69-21. Retrieved 2019-08-05. pp. 68–69: […] To have a convenient short notation for the joint resistance of resistors connected in parallel let […] A:B = AB/(A+B) […] A:B may be regarded as a new operation termed parallel addition […] Parallel addition is defined for any nonnegative numbers. The network model shows that parallel addition is commutative and associative. Moreover, multiplication is distributive over this operation. Consider now an algebraic expression in the operations (+) and (:) operating on positive numbers A, B, C, etc. […] To give a network interpretation of such a polynomial read A + B as "A series B" and A : B as "A parallel B" then it is clear that the expression […] is the joint resistance of the network […] [1] [2] (206 pages)