Permutation matrix (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Permutation matrix" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
5th place
5th place
149th place
178th place
207th place
136th place
11th place
8th place
6th place
6th place
1,923rd place
1,068th place
8,650th place
7,668th place
69th place
59th place
18th place
17th place

archive.org

arxiv.org

doi.org

harvard.edu

ui.adsabs.harvard.edu

numdam.org

psu.edu

citeseerx.ist.psu.edu

  • Zavlanos, Michael M.; Pappas, George J. (November 2008). "A dynamical systems approach to weighted graph matching". Automatica. 44 (11): 2817–2824. CiteSeerX 10.1.1.128.6870. doi:10.1016/j.automatica.2008.04.009. S2CID 834305. Retrieved 21 August 2022. Let denote the set of orthogonal matrices and denote the set of element-wise non-negative matrices. Then, , where is the set of permutation matrices.

sciencedirect.com

  • Zavlanos, Michael M.; Pappas, George J. (November 2008). "A dynamical systems approach to weighted graph matching". Automatica. 44 (11): 2817–2824. CiteSeerX 10.1.1.128.6870. doi:10.1016/j.automatica.2008.04.009. S2CID 834305. Retrieved 21 August 2022. Let denote the set of orthogonal matrices and denote the set of element-wise non-negative matrices. Then, , where is the set of permutation matrices.

semanticscholar.org

api.semanticscholar.org

  • Zavlanos, Michael M.; Pappas, George J. (November 2008). "A dynamical systems approach to weighted graph matching". Automatica. 44 (11): 2817–2824. CiteSeerX 10.1.1.128.6870. doi:10.1016/j.automatica.2008.04.009. S2CID 834305. Retrieved 21 August 2022. Let denote the set of orthogonal matrices and denote the set of element-wise non-negative matrices. Then, , where is the set of permutation matrices.

worldcat.org

search.worldcat.org

  • Artin, Michael (1991). Algebra. Prentice Hall. pp. 24–26, 118, 259, 322. ISBN 0-13-004763-5. OCLC 24364036.
  • Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. A K Peters/CRC Press. p. 179. doi:10.1201/b21368. ISBN 978-0-429-06306-0. OCLC 946786108. A permutation—say, of the names of a number of people—can be thought of as moving either the names or the people. The alias viewpoint regards the permutation as assigning a new name or alias to each person (from the Latin alias = otherwise). Alternatively, from the alibi viewoint we move the people to the places corresponding to their new names (from the Latin alibi = in another place.)

zbmath.org