Persistent homology (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Persistent homology" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
5th place
5th place
11th place
8th place
4th place
4th place
451st place
277th place
3rd place
3rd place
274th place
309th place
120th place
125th place
69th place
59th place
4,903rd place
3,679th place

ams.org

arxiv.org

  • Morozov, Dmitriy; Skraba, Primoz (2024). "Persistent (Co)Homology in Matrix Multiplication Time". Arxiv. arXiv:2412.02591.

books.google.com

doi.org

  • Kerber, Michael; Sharathkumar, R. (2013). "Approximate Čech Complex in Low and High Dimensions". In Cai, Leizhen; Cheng, Siu-Wing; Lam, Tak-Wah (eds.). Algorithms and Computation. Lecture Notes in Computer Science. Vol. 8283. Berlin, Heidelberg: Springer. pp. 666–676. doi:10.1007/978-3-642-45030-3_62. ISBN 978-3-642-45030-3. S2CID 5770506.
  • Dey, Tamal K.; Shi, Dayu; Wang, Yusu (2019-01-30). "SimBa: An Efficient Tool for Approximating Rips-filtration Persistence via Simplicial Batch Collapse". ACM Journal of Experimental Algorithmics. 24: 1.5:1–1.5:16. doi:10.1145/3284360. ISSN 1084-6654. S2CID 216028146.
  • Verri, A.; Uras, C.; Frosini, P.; Ferri, M. (1993). "On the use of size functions for shape analysis". Biological Cybernetics. 70 (2): 99–107. doi:10.1007/BF00200823. S2CID 39065932.
  • Zomorodian, Afra; Carlsson, Gunnar (2004-11-19). "Computing Persistent Homology". Discrete & Computational Geometry. 33 (2): 249–274. doi:10.1007/s00454-004-1146-y. ISSN 0179-5376.
  • Cohen-Steiner, David; Edelsbrunner, Herbert; Harer, John (2006-12-12). "Stability of Persistence Diagrams". Discrete & Computational Geometry. 37 (1): 103–120. doi:10.1007/s00454-006-1276-5. ISSN 0179-5376.
  • Sheehy, Donald R. (June 2013). "Linear-Size Approximations to the Vietoris–Rips Filtration". Discrete & Computational Geometry. 49 (4): 778–796. doi:10.1007/s00454-013-9513-1.
  • Botnan, Magnus Bakke; Spreemann, Gard (March 2015). "Approximating persistent homology in Euclidean space through collapses". Applicable Algebra in Engineering, Communication and Computing. 26 (1–2): 73–101. doi:10.1007/s00200-014-0247-y.
  • Choudhary, Aruni; Kerber, Michael; Raghvendra, Sharath (2017). "Improved Approximate Rips Filtrations with Shifted Integer Lattices". LIPIcs, Volume 87, ESA 2017. 87: 28:1–28:13. doi:10.4230/LIPIcs.ESA.2017.28.
  • Brun, Morten; Blaser, Nello (June 2019). "Sparse Dowker nerves". Journal of Applied and Computational Topology. 3 (1–2): 1–28. doi:10.1007/s41468-019-00028-9.
  • Otter, Nina; Porter, Mason A; Tillmann, Ulrike; et al. (2017-08-09). "A roadmap for the computation of persistent homology". EPJ Data Science. 6 (1). Springer: 17. doi:10.1140/epjds/s13688-017-0109-5. ISSN 2193-1127. PMC 6979512. PMID 32025466.
  • Bauer, Ulrich; Kerber, Michael; Reininghaus, Jan; Wagner, Hubert (2014). "PHAT – Persistent Homology Algorithms Toolbox". Mathematical Software – ICMS 2014. Springer Berlin Heidelberg. pp. 137–143. doi:10.1007/978-3-662-44199-2_24. ISBN 978-3-662-44198-5. ISSN 0302-9743.
  • Maria, Clément; Boissonnat, Jean-Daniel; Glisse, Marc; et al. (2014). "The Gudhi Library: Simplicial Complexes and Persistent Homology". Mathematical Software – ICMS 2014 (PDF). Berlin, Heidelberg: Springer. pp. 167–174. doi:10.1007/978-3-662-44199-2_28. ISBN 978-3-662-44198-5. ISSN 0302-9743. S2CID 17810678.

inria.fr

hal.inria.fr

nih.gov

ncbi.nlm.nih.gov

pubmed.ncbi.nlm.nih.gov

researchgate.net

semanticscholar.org

api.semanticscholar.org

  • Kerber, Michael; Sharathkumar, R. (2013). "Approximate Čech Complex in Low and High Dimensions". In Cai, Leizhen; Cheng, Siu-Wing; Lam, Tak-Wah (eds.). Algorithms and Computation. Lecture Notes in Computer Science. Vol. 8283. Berlin, Heidelberg: Springer. pp. 666–676. doi:10.1007/978-3-642-45030-3_62. ISBN 978-3-642-45030-3. S2CID 5770506.
  • Dey, Tamal K.; Shi, Dayu; Wang, Yusu (2019-01-30). "SimBa: An Efficient Tool for Approximating Rips-filtration Persistence via Simplicial Batch Collapse". ACM Journal of Experimental Algorithmics. 24: 1.5:1–1.5:16. doi:10.1145/3284360. ISSN 1084-6654. S2CID 216028146.
  • Verri, A.; Uras, C.; Frosini, P.; Ferri, M. (1993). "On the use of size functions for shape analysis". Biological Cybernetics. 70 (2): 99–107. doi:10.1007/BF00200823. S2CID 39065932.
  • Maria, Clément; Boissonnat, Jean-Daniel; Glisse, Marc; et al. (2014). "The Gudhi Library: Simplicial Complexes and Persistent Homology". Mathematical Software – ICMS 2014 (PDF). Berlin, Heidelberg: Springer. pp. 167–174. doi:10.1007/978-3-662-44199-2_28. ISBN 978-3-662-44198-5. ISSN 0302-9743. S2CID 17810678.

springer.com

link.springer.com

worldcat.org

search.worldcat.org