Hai, H.T.N.; Nguyen, T.T.; Nishibori, M.; Ishihara, T.; Edalati, K. (May 2025). "Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure". Applied Catalysis B. 365: 124968. arXiv:2412.18722. doi:10.1016/j.apcatb.2024.124968. S2CID274967476.
Goodeve, C.F.; Kitchener, J.A. (1938). "The Mechanism of Photosensitization by Solids". Transactions of the Faraday Society. 34: 902–912. doi:10.1039/tf9383400902.
Ikekawa, A.; Kamiya, M.; Fujita, Y.; Kwan, T. (1965). "On the Competition of Homogeneous and Heterogeneous Chain Terminations in Heterogeneous Photooxidation Catalysis by Zinc Oxide". Bulletin of the Chemical Society of Japan. 38: 32–36. doi:10.1246/bcsj.38.32.
Doerffler, W.; Hauffe, K. (1964). "Heterogeneous Photocatalysis I. Influence of Oxidizing and Reducing Gases on the Electrical Conductivity of Dark and Illuminated Zinc Oxide Surfaces". J Catal. 3 (2): 156–170. doi:10.1016/0021-9517(64)90123-X.
Tanaka, K.I.; Blyholde, G. (1970). "Photocatalytic and Thermal Catalytic Decomposition of Nitrous Oxide on Zinc Oxide". J. Chem. Soc. D. 18 (18): 1130. doi:10.1039/c29700001130.
Chu, S.; Li, W.; Yan, Y.; Hamann, T.; Shih, I.; Wang, D.; Mi, Z. (2017). "Roadmap on Solar Water Splitting: Current Status and Future Prospects". Nano Futures. 1 (2). IOP Publishing Ltd: 022001. Bibcode:2017NanoF...1b2001C. doi:10.1088/2399-1984/aa88a1. S2CID3903962.
Linsebigler, Amy L.; Lu, Guangquan.; Yates, John T. (1995). "Photocatalysis on TiO 2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. S2CID53343077.
Karvinena, Saila; Hirvab, Pipsa; Pakkanen, Tapani A (2003). "Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO 2". Journal of Molecular Structure: Theochem. 626 (1–3): 271–277. doi:10.1016/S0166-1280(03)00108-8.
Daneshvar, N; Salari, D; Khataee, A.R (2004). "Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO 2". Journal of Photochemistry and Photobiology A: Chemistry. 162 (2–3): 317–322. doi:10.1016/S1010-6030(03)00378-2.
Fuchigami, Toshio; Inagi, Shinsuke; Atobe, Mahito, eds. (2014-10-18), "Appendix B: Tables of Physical Data", Fundamentals and Applications of Organic Electrochemistry, Chichester, United Kingdom: John Wiley & Sons Ltd, pp. 217–222, doi:10.1002/9781118670750.app2, ISBN978-1-118-67075-0
Rouzafzay, F.; Shidpour, R. (2020). "Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation". Alloys and Compounds. 829: 154614. doi:10.1016/J.JALLCOM.2020.154614. S2CID216233251.
Edalati, P.; Wang, Q.; Razavi-khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. (February 2020). "Photocatalytic hydrogen evolution on a high-entropy oxide". Journal of Materials Chemistry A. 8: 3814–3821. doi:10.1039/C9TA12846H. S2CID212862582.
Hai, H.T.N.; Nguyen, T.T.; Nishibori, M.; Ishihara, T.; Edalati, K. (May 2025). "Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure". Applied Catalysis B. 365: 124968. arXiv:2412.18722. doi:10.1016/j.apcatb.2024.124968. S2CID274967476.
Kudo, Akihiko; Kato, Hideki; Tsuji, Issei (2004). "Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting". Chemistry Letters. 33 (12): 1534. doi:10.1002/chin.200513248.
Kondrakov AO, Ignatev AN, Lunin VV, Frimmel FH, Braese S, Horn H (2016). "Roles of water and dissolved oxygen in photocatalytic generation of free OH radicals in aqueous TiO 2 suspensions: An isotope labeling study". Applied Catalysis B: Environmental. 182: 424–430. doi:10.1016/j.apcatb.2015.09.038.
Kondrakov AO, Ignatev AN, Frimmel FH, Braese S, Horn H, Revelsky AI (2014). "Formation of genotoxic quinones during bisphenol A degradation by TiO 2 photocatalysis and UV photolysis: A comparative study". Applied Catalysis B: Environmental. 160: 106–114. doi:10.1016/j.apcatb.2014.05.007.
McCullagh C, Robertson JM, Bahnemann DW, Robertson PK (2007). "The application of TiO 2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review". Research on Chemical Intermediates. 33 (3–5): 359–375. doi:10.1163/156856707779238775. S2CID94649652.
Kostedt IV, William L.; Jack Drwiega; David W. Mazyck; Seung-Woo Lee; Wolfgang Sigmund; Chang-Yu Wu; Paul Chadik (2005). "Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants". Environmental Science & Technology. 39 (20). American Chemical Society: 8052–8056. Bibcode:2005EnST...39.8052K. doi:10.1021/es0508121. PMID16295874.
Tan, S. S.; L. Zou; E. Hu (2006). "Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO 2 pellets". Catalysis Today. 115 (1–4): 269–273. doi:10.1016/j.cattod.2006.02.057.
Yao, Y. Yao; G. Li; S. Ciston; R. M. Lueptow; K. Gray (2008). "Photoreactive TiO 2 /Carbon Nanotube Composites: Synthesis and Reactivity". Environmental Science & Technology. 42 (13). American Chemical Society: 4952–4957. Bibcode:2008EnST...42.4952Y. doi:10.1021/es800191n. PMID18678032.
Linsebigler, A. L.; G. Lu; J.T. Yates (1995). "Photocatalysis on TiO 2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. S2CID53343077.
Stephenson, Corey; Yoon, Tehshik; MacMillan, David W. C. (2018-04-02). Visible Light Photocatalysis in Organic Chemistry. doi:10.1002/9783527674145. ISBN9783527674145.
Kostedt IV, William L.; Jack Drwiega; David W. Mazyck; Seung-Woo Lee; Wolfgang Sigmund; Chang-Yu Wu; Paul Chadik (2005). "Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants". Environmental Science & Technology. 39 (20). American Chemical Society: 8052–8056. Bibcode:2005EnST...39.8052K. doi:10.1021/es0508121. PMID16295874.
Yao, Y. Yao; G. Li; S. Ciston; R. M. Lueptow; K. Gray (2008). "Photoreactive TiO 2 /Carbon Nanotube Composites: Synthesis and Reactivity". Environmental Science & Technology. 42 (13). American Chemical Society: 4952–4957. Bibcode:2008EnST...42.4952Y. doi:10.1021/es800191n. PMID18678032.
Kostedt IV, William L.; Jack Drwiega; David W. Mazyck; Seung-Woo Lee; Wolfgang Sigmund; Chang-Yu Wu; Paul Chadik (2005). "Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants". Environmental Science & Technology. 39 (20). American Chemical Society: 8052–8056. Bibcode:2005EnST...39.8052K. doi:10.1021/es0508121. PMID16295874.
Yao, Y. Yao; G. Li; S. Ciston; R. M. Lueptow; K. Gray (2008). "Photoreactive TiO 2 /Carbon Nanotube Composites: Synthesis and Reactivity". Environmental Science & Technology. 42 (13). American Chemical Society: 4952–4957. Bibcode:2008EnST...42.4952Y. doi:10.1021/es800191n. PMID18678032.
Tahir, Muhammad Bilal; Iqbal, Tahir; Rafique, Muhammad; Rafique, Muhammad Shahid; Nawaz, Tasmia; Sagir, M. (2020-01-01), Tahir, Muhammad Bilal; Rafique, Muhammad; Rafique, Muhammad Shahid (eds.), "Chapter 5 - Nanomaterials for photocatalysis", Nanotechnology and Photocatalysis for Environmental Applications, Micro and Nano Technologies, Elsevier, pp. 65–76, ISBN978-0-12-821192-2, retrieved 2023-04-01
Chu, S.; Li, W.; Yan, Y.; Hamann, T.; Shih, I.; Wang, D.; Mi, Z. (2017). "Roadmap on Solar Water Splitting: Current Status and Future Prospects". Nano Futures. 1 (2). IOP Publishing Ltd: 022001. Bibcode:2017NanoF...1b2001C. doi:10.1088/2399-1984/aa88a1. S2CID3903962.
Linsebigler, Amy L.; Lu, Guangquan.; Yates, John T. (1995). "Photocatalysis on TiO 2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. S2CID53343077.
Rouzafzay, F.; Shidpour, R. (2020). "Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation". Alloys and Compounds. 829: 154614. doi:10.1016/J.JALLCOM.2020.154614. S2CID216233251.
Edalati, P.; Wang, Q.; Razavi-khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. (February 2020). "Photocatalytic hydrogen evolution on a high-entropy oxide". Journal of Materials Chemistry A. 8: 3814–3821. doi:10.1039/C9TA12846H. S2CID212862582.
Hai, H.T.N.; Nguyen, T.T.; Nishibori, M.; Ishihara, T.; Edalati, K. (May 2025). "Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure". Applied Catalysis B. 365: 124968. arXiv:2412.18722. doi:10.1016/j.apcatb.2024.124968. S2CID274967476.
McCullagh C, Robertson JM, Bahnemann DW, Robertson PK (2007). "The application of TiO 2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review". Research on Chemical Intermediates. 33 (3–5): 359–375. doi:10.1163/156856707779238775. S2CID94649652.
Linsebigler, A. L.; G. Lu; J.T. Yates (1995). "Photocatalysis on TiO 2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. S2CID53343077.