Photoluminescence (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Photoluminescence" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
18th place
17th place
4th place
4th place
538th place
863rd place
5th place
5th place
69th place
59th place
1,248th place
1,104th place

acs.org

pubs.acs.org

arxiv.org

doi.org

dx.doi.org

  • Hayes, G.R.; Deveaud, B. (2002). "Is Luminescence from Quantum Wells Due to Excitons?". Physica Status Solidi A 190 (3): 637–640. doi:10.1002/1521-396X(200204)190:3<637::AID-PSSA637>3.0.CO;2-7
  • Kira, M.; Jahnke, F.; Koch, S. W. (1999). "Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells". Physical Review Letters 82 (17): 3544–3547. doi:10.1103/PhysRevLett.82.3544
  • Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence". Physical Review Letters 39 (11): 691–695. doi:10.1103/PhysRevLett.39.691
  • Carmichael, H. J.; Walls, D. F. (1976). "Proposal for the measurement of the resonant Stark effect by photon correlation techniques". Journal of Physics B: Atomic and Molecular Physics 9 (4): L43. doi:10.1088/0022-3700/9/4/001
  • Alfaraj, N.; Mitra, S.; Wu, F.; Ajia, A. A.; Janjua, B.; Prabaswara, A.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires". Applied Physics Letters 110 (16): 161110. [1]
  • Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W. (1999). "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures". Progress in Quantum Electronics 23 (6): 189–279. doi:10.1016/S0079-6727(99)00008-7.
  • Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. (2003). "Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". Nature 423 (6941): 734–738. doi:10.1038/nature01676.
  • Chatterjee, S.; Ell, C.; Mosor, S.; Khitrova, G.; Gibbs, H.; Hoyer, W.; Kira, M.; Koch, S. W.; Prineas, J.; Stolz, H. (2004). "Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons". Physical Review Letters 92 (6). doi:10.1103/PhysRevLett.92.067402.
  • Arlt, S.; Siegner, U.; Kunde, J.; Morier-Genoud, F.; Keller, U. (1999). "Ultrafast dephasing of continuum transitions in bulk semiconductors". Physical Review B 59 (23): 14860–14863. doi:10.1103/PhysRevB.59.14860.
  • Umlauff, M.; Hoffmann, J.; Kalt, H.; Langbein, W.; Hvam, J.; Scholl, M.; Söllner, J.; Heuken, M.; Jobst, B.; Hommel, D. (1998). "Direct observation of free-exciton thermalization in quantum-well structures". Physical Review B 57 (3): 1390–1393. doi:10.1103/PhysRevB.57.1390.
  • Kash, Kathleen; Shah, Jagdeep (1984). "Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies". Applied Physics Letters 45 (4): 401. doi:10.1063/1.95235.
  • Polland, H.; Rühle, W.; Kuhl, J.; Ploog, K.; Fujiwara, K.; Nakayama, T. (1987). "Nonequilibrium cooling of thermalized electrons and holes in GaAs/Al_{x}Ga_{1-x}As quantum wells". Physical Review B 35 (15): 8273–8276. doi:10.1103/PhysRevB.35.8273.
  • Shah, Jagdeep; Leite, R.C.C.; Scott, J.F. (1970). "Photoexcited hot LO phonons in GaAs". Solid State Communications 8 (14): 1089–1093. doi:10.1016/0038-1098(70)90002-5.
  • Wang, Hailin; Ferrio, Kyle; Steel, Duncan; Hu, Y.; Binder, R.; Koch, S. W. (1993). "Transient nonlinear optical response from excitation induced dephasing in GaAs". Physical Review Letters 71 (8): 1261–1264. doi:10.1103/PhysRevLett.71.1261.
  • Baranovskii, S.; Eichmann, R.; Thomas, P. (1998). "Temperature-dependent exciton luminescence in quantum wells by computer simulation". Physical Review B 58 (19): 13081–13087. doi:10.1103/PhysRevB.58.13081.

doi.org

  • Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; Macdonald, Daniel; Nguyen, Hieu T. (24 November 2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  • Lähnemann, J.; Jahn, U.; Brandt, O.; Flissikowski, T.; Dogan, P.; Grahn, H.T. (2014). "Luminescence associated with stacking faults in GaN". J. Phys. D: Appl. Phys. 47 (42): 423001. arXiv:1405.1261. Bibcode:2014JPhD...47P3001L. doi:10.1088/0022-3727/47/42/423001. S2CID 118671207.
  • Alfaraj, N.; Mumthaz Muhammed, M.; Li, K.; Janjua, B.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Thermodynamic photoinduced disorder in AlGaN nanowires". AIP Advances 7 (12): 125113. [2]
  • Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; MacDonald, Daniel; Nguyen, Hieu T. (2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  • Sibentritt, Susanne; Weiss, Thomas Paul; Sood, Mohit; Wolter, Max Hilaire; Lomuscio, Alberto; Ramirez, Omar (2021). "How photoluminescence can predict the efficiency of solar cells". Journal of Physics: Materials. 4 (4): 042010. Bibcode:2021JPhM....4d2010S. doi:10.1088/2515-7639/ac266e. S2CID 239106918.
  • Brüggemann, R.; Reynolds, S. (2006). "Modulated photoluminescence studies for lifetime determination in amorphous-silicon passivated crystalline-silicon wafers". Physics of Plasmas. 32 (9–20): 1888–1891. Bibcode:2006JNCS..352.1888B. doi:10.1016/j.jnoncrysol.2005.11.092.

harvard.edu

ui.adsabs.harvard.edu

iupac.org

goldbook.iupac.org

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; Macdonald, Daniel; Nguyen, Hieu T. (24 November 2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  • Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; MacDonald, Daniel; Nguyen, Hieu T. (2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.

semanticscholar.org

api.semanticscholar.org

  • Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; Macdonald, Daniel; Nguyen, Hieu T. (24 November 2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  • Lähnemann, J.; Jahn, U.; Brandt, O.; Flissikowski, T.; Dogan, P.; Grahn, H.T. (2014). "Luminescence associated with stacking faults in GaN". J. Phys. D: Appl. Phys. 47 (42): 423001. arXiv:1405.1261. Bibcode:2014JPhD...47P3001L. doi:10.1088/0022-3727/47/42/423001. S2CID 118671207.
  • Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; MacDonald, Daniel; Nguyen, Hieu T. (2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  • Sibentritt, Susanne; Weiss, Thomas Paul; Sood, Mohit; Wolter, Max Hilaire; Lomuscio, Alberto; Ramirez, Omar (2021). "How photoluminescence can predict the efficiency of solar cells". Journal of Physics: Materials. 4 (4): 042010. Bibcode:2021JPhM....4d2010S. doi:10.1088/2515-7639/ac266e. S2CID 239106918.

worldcat.org