Analysis of information sources in references of the Wikipedia article "Poincaré plot" in English language version.
Analysis of time and frequency domain measures of heart rate (HR) variability from 24-hour ambulatory ECG recordings provides prognostic information on patients after an acute myocardial infarction.1–4 A number of new methods based on nonlinear system theory ("chaos theory and fractals") have been recently developed to quantify the complex HR dynamics and to complement the conventional measures of HR variability.5–12 New fractal analysis methods have already provided clinically useful information on patients with impaired left ventricular function,13–15 but their prognostic power has not been proved in large-scale studies. In the present investigation, we assessed the use of various fractal analysis methods of HR variability to predict death in a population of patients with acute myocardial infarction (MI) and depressed left ventricular function. The prediction of death was evaluated in survivors of acute MI included in the Danish Investigations of Arrhythmia and Mortality on Dofetilide (DIAMOND-MI) trial. We also sought to determine whether these new fractal measures of R-R interval dynamics predict specifically either arrhythmic or nonarrhythmic cardiac death.
Analysis of time and frequency domain measures of heart rate (HR) variability from 24-hour ambulatory ECG recordings provides prognostic information on patients after an acute myocardial infarction.1–4 A number of new methods based on nonlinear system theory ("chaos theory and fractals") have been recently developed to quantify the complex HR dynamics and to complement the conventional measures of HR variability.5–12 New fractal analysis methods have already provided clinically useful information on patients with impaired left ventricular function,13–15 but their prognostic power has not been proved in large-scale studies. In the present investigation, we assessed the use of various fractal analysis methods of HR variability to predict death in a population of patients with acute myocardial infarction (MI) and depressed left ventricular function. The prediction of death was evaluated in survivors of acute MI included in the Danish Investigations of Arrhythmia and Mortality on Dofetilide (DIAMOND-MI) trial. We also sought to determine whether these new fractal measures of R-R interval dynamics predict specifically either arrhythmic or nonarrhythmic cardiac death.
Analysis of time and frequency domain measures of heart rate (HR) variability from 24-hour ambulatory ECG recordings provides prognostic information on patients after an acute myocardial infarction.1–4 A number of new methods based on nonlinear system theory ("chaos theory and fractals") have been recently developed to quantify the complex HR dynamics and to complement the conventional measures of HR variability.5–12 New fractal analysis methods have already provided clinically useful information on patients with impaired left ventricular function,13–15 but their prognostic power has not been proved in large-scale studies. In the present investigation, we assessed the use of various fractal analysis methods of HR variability to predict death in a population of patients with acute myocardial infarction (MI) and depressed left ventricular function. The prediction of death was evaluated in survivors of acute MI included in the Danish Investigations of Arrhythmia and Mortality on Dofetilide (DIAMOND-MI) trial. We also sought to determine whether these new fractal measures of R-R interval dynamics predict specifically either arrhythmic or nonarrhythmic cardiac death.