Primality test (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Primality test" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
2,242nd place
1,513th place
69th place
59th place
321st place
724th place
451st place
277th place
11th place
8th place
1,923rd place
1,068th place
513th place
537th place
741st place
577th place
6,454th place
4,437th place
5,032nd place
3,357th place

ams.org

mathscinet.ams.org

arxiv.org

dartmouth.edu

math.dartmouth.edu

  • Pomerance, Carl; Selfridge, John L.; Wagstaff, Samuel S. Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7.
  • Carl Pomerance & Hendrik W. Lenstra (July 20, 2005). "Primality testing with Gaussian periods" (PDF).

doi.org

  • Pomerance, Carl; Selfridge, John L.; Wagstaff, Samuel S. Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7.
  • Baillie, Robert; Wagstaff, Samuel S. Jr. (October 1980). "Lucas Pseudoprimes" (PDF). Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. MR 0583518.
  • Baillie, Robert; Fiori, Andrew; Wagstaff, Samuel S. Jr. (July 2021). "Strengthening the Baillie-PSW Primality Test". Mathematics of Computation. 90 (330): 1931–1955. arXiv:2006.14425. doi:10.1090/mcom/3616. S2CID 220055722.
  • Gary L. Miller (1976). "Riemann's Hypothesis and Tests for Primality". Journal of Computer and System Sciences. 13 (3): 300–317. doi:10.1016/S0022-0000(76)80043-8.
  • Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "Primes is in P" (PDF). Annals of Mathematics. 160 (2): 781–793. doi:10.4007/annals.2004.160.781.
  • Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "PRIMES is in P" (PDF). Annals of Mathematics. 160 (2): 781–793. doi:10.4007/annals.2004.160.781.
  • Allender, Eric; Saks, Michael; Shparlinski, Igor (2001). "A Lower Bound for Primality". Journal of Computer and System Sciences. 62 (2): 356–366. doi:10.1006/jcss.2000.1725.

free.fr

mpqs.free.fr

iacr.org

eprint.iacr.org

iitk.ac.in

cse.iitk.ac.in

princeton.edu

annals.math.princeton.edu

semanticscholar.org

api.semanticscholar.org

wolfram.com

mathworld.wolfram.com

zbmath.org

  • Pocklington, H. C. (1914). "The determination of the prime or composite nature of large numbers by Fermat's theorem". Cambr. Phil. Soc. Proc. 18: 29–30. JFM 45.1250.02.