Projection (mathematics) (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Projection (mathematics)" in English language version.

refsWebsite
Global rank English rank
3,863rd place
2,637th place
3rd place
3rd place
621st place
380th place
2nd place
2nd place
1st place
1st place
2,691st place
1,948th place
1,601st place
1,117th place

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Lee, John M. (2012). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). p. 606. doi:10.1007/978-1-4419-9982-5. ISBN 978-1-4419-9982-5. Exercise A.32. Suppose are topological spaces. Show that each projection is an open map.

encyclopediaofmath.org (Global: 3,863rd place; English: 2,637th place)

  • "Direct product - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-08-11.
  • "Stereographic projection - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-08-11.
  • "Projection - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-08-11.
  • "Retraction - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-08-11.
  • "Product of a family of objects in a category - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-08-11.

rochester.edu (Global: 2,691st place; English: 1,948th place)

cs.rochester.edu

utoronto.ca (Global: 1,601st place; English: 1,117th place)

individual.utoronto.ca

web.archive.org (Global: 1st place; English: 1st place)

zenodo.org (Global: 621st place; English: 380th place)

  • Lee, John M. (2012). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). p. 606. doi:10.1007/978-1-4419-9982-5. ISBN 978-1-4419-9982-5. Exercise A.32. Suppose are topological spaces. Show that each projection is an open map.