Lewis, A. S.; Luke, D. R.; Malick, J. (2009). "Local convergence for alternating and averaged nonconvex projections". Foundations of Computational Mathematics. 9 (4): 485–513. arXiv:0709.0109. doi:10.1007/s10208-008-9036-y.
J. von Neumann,Neumann, John Von (1949). "On rings of operators. Reduction theory". Ann. of Math. 50 (2): 401–485. doi:10.2307/1969463. JSTOR1969463. (a reprint of lecture notes first distributed in 1933)
Gubin, L.G.; Polyak, B.T.; Raik, E.V. (1967). "The method of projections for finding the common point of convex sets". U.S.S.R. Computational Mathematics and Mathematical Physics. 7 (6): 1–24. doi:10.1016/0041-5553(67)90113-9.
Bauschke, H.H.; Borwein, J.M. (1993). "On the convergence of von Neumann's alternating projection algorithm for two sets". Set-Valued Analysis. 1 (2): 185–212. doi:10.1007/bf01027691. S2CID121602545.
Lewis, A. S.; Luke, D. R.; Malick, J. (2009). "Local convergence for alternating and averaged nonconvex projections". Foundations of Computational Mathematics. 9 (4): 485–513. arXiv:0709.0109. doi:10.1007/s10208-008-9036-y.
J. von Neumann,Neumann, John Von (1949). "On rings of operators. Reduction theory". Ann. of Math. 50 (2): 401–485. doi:10.2307/1969463. JSTOR1969463. (a reprint of lecture notes first distributed in 1933)
Bauschke, H.H.; Borwein, J.M. (1993). "On the convergence of von Neumann's alternating projection algorithm for two sets". Set-Valued Analysis. 1 (2): 185–212. doi:10.1007/bf01027691. S2CID121602545.