Projections onto convex sets (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Projections onto convex sets" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
207th place
136th place
26th place
20th place
11th place
8th place
1st place
1st place
6,910th place
low place
69th place
59th place

arxiv.org (Global: 69th place; English: 59th place)

  • Lewis, A. S.; Luke, D. R.; Malick, J. (2009). "Local convergence for alternating and averaged nonconvex projections". Foundations of Computational Mathematics. 9 (4): 485–513. arXiv:0709.0109. doi:10.1007/s10208-008-9036-y.

doi.org (Global: 2nd place; English: 2nd place)

  • Bauschke, H.H.; Borwein, J.M. (1996). "On projection algorithms for solving convex feasibility problems". SIAM Review. 38 (3): 367–426. CiteSeerX 10.1.1.49.4940. doi:10.1137/S0036144593251710.
  • J. von Neumann,Neumann, John Von (1949). "On rings of operators. Reduction theory". Ann. of Math. 50 (2): 401–485. doi:10.2307/1969463. JSTOR 1969463. (a reprint of lecture notes first distributed in 1933)
  • Gubin, L.G.; Polyak, B.T.; Raik, E.V. (1967). "The method of projections for finding the common point of convex sets". U.S.S.R. Computational Mathematics and Mathematical Physics. 7 (6): 1–24. doi:10.1016/0041-5553(67)90113-9.
  • Bauschke, H.H.; Borwein, J.M. (1993). "On the convergence of von Neumann's alternating projection algorithm for two sets". Set-Valued Analysis. 1 (2): 185–212. doi:10.1007/bf01027691. S2CID 121602545.
  • Lewis, Adrian S.; Malick, Jérôme (2008). "Alternating Projections on Manifolds". Mathematics of Operations Research. 33: 216–234. CiteSeerX 10.1.1.416.6182. doi:10.1287/moor.1070.0291.
  • Combettes, P. L. (1993). "The foundations of set theoretic estimation" (PDF). Proceedings of the IEEE. 81 (2): 182–208. doi:10.1109/5.214546. Archived from the original (PDF) on 2015-06-14. Retrieved 2012-10-09.
  • Lewis, A. S.; Luke, D. R.; Malick, J. (2009). "Local convergence for alternating and averaged nonconvex projections". Foundations of Computational Mathematics. 9 (4): 485–513. arXiv:0709.0109. doi:10.1007/s10208-008-9036-y.

jstor.org (Global: 26th place; English: 20th place)

  • J. von Neumann,Neumann, John Von (1949). "On rings of operators. Reduction theory". Ann. of Math. 50 (2): 401–485. doi:10.2307/1969463. JSTOR 1969463. (a reprint of lecture notes first distributed in 1933)

jussieu.fr (Global: 6,910th place; English: low place)

ann.jussieu.fr

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

  • Bauschke, H.H.; Borwein, J.M. (1996). "On projection algorithms for solving convex feasibility problems". SIAM Review. 38 (3): 367–426. CiteSeerX 10.1.1.49.4940. doi:10.1137/S0036144593251710.
  • Lewis, Adrian S.; Malick, Jérôme (2008). "Alternating Projections on Manifolds". Mathematics of Operations Research. 33: 216–234. CiteSeerX 10.1.1.416.6182. doi:10.1287/moor.1070.0291.

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Bauschke, H.H.; Borwein, J.M. (1993). "On the convergence of von Neumann's alternating projection algorithm for two sets". Set-Valued Analysis. 1 (2): 185–212. doi:10.1007/bf01027691. S2CID 121602545.

web.archive.org (Global: 1st place; English: 1st place)