Kruskal, Rudolph & Snir (1990) instead use the opposite definition, in which each vertex has indegree one; the resulting graphs, which they call unicycular, are the transposes of the graphs considered here. Kruskal, Clyde P.; Rudolph, Larry; Snir, Marc (1990), "Efficient parallel algorithms for graph problems", Algorithmica, 5 (1): 43–64, doi:10.1007/BF01840376, S2CID753980.
Gabow & Westermann (1992). See also the faster approximation schemes of Kowalik (2006). Gabow, H. N.; Westermann, H. H. (1992), "Forests, frames, and games: Algorithms for matroid sums and applications", Algorithmica, 7 (1): 465–497, doi:10.1007/BF01758774, S2CID40358357. Kowalik, Ł. (2006), "Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures", in Asano, Tetsuo (ed.), Proceedings of the International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, vol. 4288, Springer-Verlag, pp. 557–566, doi:10.1007/11940128, ISBN978-3-540-49694-6.
Kruskal, Rudolph & Snir (1990) instead use the opposite definition, in which each vertex has indegree one; the resulting graphs, which they call unicycular, are the transposes of the graphs considered here. Kruskal, Clyde P.; Rudolph, Larry; Snir, Marc (1990), "Efficient parallel algorithms for graph problems", Algorithmica, 5 (1): 43–64, doi:10.1007/BF01840376, S2CID753980.
Gabow & Westermann (1992). See also the faster approximation schemes of Kowalik (2006). Gabow, H. N.; Westermann, H. H. (1992), "Forests, frames, and games: Algorithms for matroid sums and applications", Algorithmica, 7 (1): 465–497, doi:10.1007/BF01758774, S2CID40358357. Kowalik, Ł. (2006), "Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures", in Asano, Tetsuo (ed.), Proceedings of the International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, vol. 4288, Springer-Verlag, pp. 557–566, doi:10.1007/11940128, ISBN978-3-540-49694-6.