Pythagorean tiling (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Pythagorean tiling" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
11th place
8th place
26th place
20th place
3rd place
3rd place
702nd place
520th place
6th place
6th place
166th place
121st place
low place
low place

ams.org

mathscinet.ams.org

archive.org

books.google.com

doi.org

  • Nelsen, Roger B. (November 2003), "Paintings, plane tilings, and proofs" (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741, S2CID 126000048. Reprinted in Haunsperger, Deanna; Kennedy, Stephen (2007), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3. See also Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, vol. 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1.
  • Radin, C. (1994), "The Pinwheel Tilings of the Plane", Annals of Mathematics, 139 (3): 661–702, doi:10.2307/2118575, JSTOR 2118575
  • Aguiló, Francesc; Fiol, Miquel Angel; Fiol, Maria Lluïsa (2000), "Periodic tilings as a dissection method", American Mathematical Monthly, 107 (4): 341–352, doi:10.2307/2589179, JSTOR 2589179, MR 1763064.
  • Ostermann, Alexander; Wanner, Gerhard (2012), "Thales and Pythagoras", Geometry by Its History, Undergraduate Texts in Mathematics, Springer, pp. 3–26, doi:10.1007/978-3-642-29163-0_1. See in particular pp. 15–16.
  • Steurer, Walter; Deloudi, Sofia (2009), "3.5.3.7 The Klotz construction", Crystallography of Quasicrystals: Concepts, Methods and Structures, Springer Series in Materials Science, vol. 126, Springer, pp. 91–92, doi:10.1007/978-3-642-01899-2, ISBN 978-3-642-01898-5.
  • The truth of his conjecture for two-dimensional tilings was known already to Keller, but it was since proven false for dimensions eight and above. For a recent survey on results related to this conjecture, see Zong, Chuanming (2005), "What is known about unit cubes", Bulletin of the American Mathematical Society, New Series, 42 (2): 181–211, doi:10.1090/S0273-0979-05-01050-5, MR 2133310.
  • Bölcskei, Attila (2001), "Filling space with cubes of two sizes", Publicationes Mathematicae Debrecen, 59 (3–4): 317–326, doi:10.5486/PMD.2001.2480, MR 1874434, S2CID 226270246. See also Dawson (1984), which includes an illustration of the three-dimensional tiling, credited to "Rogers" but cited to a 1960 paper by Richard K. Guy: Dawson, R. J. M. (1984), "On filling space with different integer cubes", Journal of Combinatorial Theory, Series A, 36 (2): 221–229, doi:10.1016/0097-3165(84)90007-4, MR 0734979.
  • Burns, Aidan (1994), "78.13 Fractal tilings", Mathematical Gazette, 78 (482): 193–196, doi:10.2307/3618577, JSTOR 3618577, S2CID 126185324. Rigby, John (1995), "79.51 Tiling the plane with similar polygons of two sizes", Mathematical Gazette, 79 (486): 560–561, doi:10.2307/3618091, JSTOR 3618091, S2CID 125458495.
  • Figure 3 of Danzer, Ludwig; Grünbaum, Branko; Shephard, G. C. (1982), "Unsolved Problems: Can All Tiles of a Tiling Have Five-Fold Symmetry?", The American Mathematical Monthly, 89 (8): 568–570+583–585, doi:10.2307/2320829, JSTOR 2320829, MR 1540019.
  • Sánchez, José; Escrig, Félix (December 2011), "Frames designed by Leonardo with short pieces: An analytical approach", International Journal of Space Structures, 26 (4): 289–302, doi:10.1260/0266-3511.26.4.289, S2CID 108639647.

emis.de

jstor.org

semanticscholar.org

api.semanticscholar.org

  • Nelsen, Roger B. (November 2003), "Paintings, plane tilings, and proofs" (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741, S2CID 126000048. Reprinted in Haunsperger, Deanna; Kennedy, Stephen (2007), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3. See also Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, vol. 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1.
  • Bölcskei, Attila (2001), "Filling space with cubes of two sizes", Publicationes Mathematicae Debrecen, 59 (3–4): 317–326, doi:10.5486/PMD.2001.2480, MR 1874434, S2CID 226270246. See also Dawson (1984), which includes an illustration of the three-dimensional tiling, credited to "Rogers" but cited to a 1960 paper by Richard K. Guy: Dawson, R. J. M. (1984), "On filling space with different integer cubes", Journal of Combinatorial Theory, Series A, 36 (2): 221–229, doi:10.1016/0097-3165(84)90007-4, MR 0734979.
  • Burns, Aidan (1994), "78.13 Fractal tilings", Mathematical Gazette, 78 (482): 193–196, doi:10.2307/3618577, JSTOR 3618577, S2CID 126185324. Rigby, John (1995), "79.51 Tiling the plane with similar polygons of two sizes", Mathematical Gazette, 79 (486): 560–561, doi:10.2307/3618091, JSTOR 3618091, S2CID 125458495.
  • Sánchez, José; Escrig, Félix (December 2011), "Frames designed by Leonardo with short pieces: An analytical approach", International Journal of Space Structures, 26 (4): 289–302, doi:10.1260/0266-3511.26.4.289, S2CID 108639647.

sfgate.com

homeguides.sfgate.com

upenn.edu

www-stat.wharton.upenn.edu

  • Nelsen, Roger B. (November 2003), "Paintings, plane tilings, and proofs" (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741, S2CID 126000048. Reprinted in Haunsperger, Deanna; Kennedy, Stephen (2007), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3. See also Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, vol. 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1.