Pythagorean triple (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Pythagorean triple" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
3rd place
3rd place
26th place
20th place
11th place
8th place
742nd place
538th place
451st place
277th place
6th place
6th place
5th place
5th place
69th place
59th place
low place
low place
6,442nd place
4,551st place
1st place
1st place
1,266th place
860th place
70th place
63rd place
3,479th place
2,444th place
6,602nd place
6,109th place
513th place
537th place
6,511th place
4,308th place
207th place
136th place
18th place
17th place
1,252nd place
3,384th place
5,325th place
3,850th place
3,042nd place
2,171st place
507th place
429th place

ams.org

mathscinet.ams.org

ams.org

archive.org

arxiv.org

books.google.com

clarku.edu

mathcs.clarku.edu

discovermagazine.com

  • Kim, Scott (May 2002), "Bogglers", Discover: 82, The equation w4 + x4 + y4 = z4 is harder. In 1988, after 200 years of mathematicians' attempts to prove it impossible, Noam Elkies of Harvard found the counterexample, 2,682,4404 + 15,365,6394 + 18,796,7604 = 20,615,6734.

doi.org

fau.edu

math.fau.edu

harvard.edu

ui.adsabs.harvard.edu

jstor.org

loc.gov

lccn.loc.gov

maa.org

  • Robson, Eleanor (2002), "Words and Pictures: New Light on Plimpton 322" (PDF), The American Mathematical Monthly, 109 (2): 105–120, doi:10.1080/00029890.2002.11919845, S2CID 33907668

nctm.org

niu.edu

math.niu.edu

oeis.org

psu.edu

citeseerx.ist.psu.edu

semanticscholar.org

api.semanticscholar.org

  • Robson, Eleanor (2002), "Words and Pictures: New Light on Plimpton 322" (PDF), The American Mathematical Monthly, 109 (2): 105–120, doi:10.1080/00029890.2002.11919845, S2CID 33907668
  • Mitchell, Douglas W. (July 2001), "An Alternative Characterisation of All Primitive Pythagorean Triples", The Mathematical Gazette, 85 (503): 273–5, doi:10.2307/3622017, JSTOR 3622017, S2CID 126059099
  • MacHale, Des; van den Bosch, Christian (March 2012), "Generalising a result about Pythagorean triples", Mathematical Gazette, 96: 91–96, doi:10.1017/S0025557200004010, S2CID 124096076
  • Voles, Roger (July 1999), "83.27 Integer solutions of ", The Mathematical Gazette, 83 (497): 269–271, doi:10.2307/3619056, JSTOR 3619056, S2CID 123267065
  • Richinick, Jennifer (July 2008), "92.48 The upside-down Pythagorean theorem", The Mathematical Gazette, 92 (524): 313–316, doi:10.1017/s0025557200183275, JSTOR 27821792, S2CID 125989951
  • Hirschhorn, Michael (November 2011), "When is the sum of consecutive squares a square?", The Mathematical Gazette, 95: 511–2, doi:10.1017/S0025557200003636, ISSN 0025-5572, OCLC 819659848, S2CID 118776198

sjsu.edu

math.sjsu.edu

tandfonline.com

  • Kak, S. and Prabhu, M. Cryptographic applications of primitive Pythagorean triples. Cryptologia, 38:215–222, 2014. [1]

umn.edu

conservancy.umn.edu

purl.umn.edu

unirioja.es

web.archive.org

wolfram.com

mathworld.wolfram.com

worldcat.org

search.worldcat.org