Quadratic knapsack problem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Quadratic knapsack problem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
18th place
17th place
low place
8,900th place
low place
low place
207th place
136th place
low place
low place
low place
8,698th place

diku.dk

doi.org

  • C., Witzgall (1975). "Mathematical methods of site selection for Electronic Message Systems (EMS)". NBS Internal Report. 76: 18321. Bibcode:1975STIN...7618321W. doi:10.6028/nbs.ir.75-737.
  • Gallo, G.; Hammer, P.L.; Simeone, B. (1980). "Quadratic knapsack problems". Combinatorial Optimization I. Mathematical Programming Studies. Vol. 12. Springer. pp. 132–149. doi:10.1007/bfb0120892. ISBN 978-3-642-00801-6.
  • Rhys, J.M.W. (1970). "A Selection Problem of Shared Fixed Costs and Network Flows". Management Science. 17 (3): 200–207. doi:10.1287/mnsc.17.3.200.
  • Helmberg, C.; Rendl, F.; Weismantel, R. (1996). "Quadratic knapsack relaxations using cutting planes and semidefinite programming". Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science. Vol. 1084. Springer. pp. 175–189. doi:10.1007/3-540-61310-2_14. ISBN 978-3-540-61310-7.
  • Dijkhuizen, G.; Faigle, U. (1993). "A cutting-plane approach to the edge-weighted maximal clique problem". European Journal of Operational Research. 69 (1): 121–130. doi:10.1016/0377-2217(93)90097-7.
  • Park, Kyungchul; Lee, Kyungsik; Park, Sungsoo (1996). "An extended formulation approach to the edge-weighted maximal clique problem". European Journal of Operational Research. 95 (3): 671–682. doi:10.1016/0377-2217(95)00299-5.
  • Ferreira, C.E.; Martin, A.; Souza, C.C.De; Weismantel, R.; Wolsey, L.A. (1996). "Formulations and valid inequalities for the node capacitated graph partitioning problem". Mathematical Programming. 74 (3): 247–266. doi:10.1007/bf02592198. S2CID 37819561.
  • Johnson, Ellis L.; Mehrotra, Anuj; Nemhauser, George L. (1993). "Min-cut clustering". Mathematical Programming. 62 (1–3): 133–151. doi:10.1007/bf01585164. S2CID 39694326.
  • Adams, Warren P.; Sherali, Hanif D. (1986). "A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems". Management Science. 32 (10): 1274–1290. doi:10.1287/mnsc.32.10.1274.
  • Adams, Warren P.; Forrester, Richard J.; Glover, Fred W. (2004). "Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs". Discrete Optimization. 1 (2): 99–120. doi:10.1016/j.disopt.2004.03.006.
  • Adams, Warren P.; Forrester, Richard J. (2005). "A simple recipe for concise mixed 0-1 linearizations". Operations Research Letters. 33 (1): 55–61. doi:10.1016/j.orl.2004.05.001.
  • Adams, Warren P.; Forrester, Richard J. (2007). "Linear forms of nonlinear expressions: New insights on old ideas". Operations Research Letters. 35 (4): 510–518. doi:10.1016/j.orl.2006.08.008.
  • Glover, Fred; Woolsey, Eugene (1974). "Technical Note—Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program". Operations Research. 22 (1): 180–182. doi:10.1287/opre.22.1.180.
  • Glover, Fred (1975). "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems". Management Science. 22 (4): 455–460. doi:10.1287/mnsc.22.4.455. S2CID 17004334.
  • Glover, Fred; Woolsey, Eugene (1973). "Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems". Operations Research. 21 (1): 156–161. doi:10.1287/opre.21.1.156.
  • Dantzig, George B. (1957). "Discrete-Variable Extremum Problems". Operations Research. 5 (2): 266–288. doi:10.1016/j.disopt.2004.03.006.
  • Caprara, Alberto; Pisinger, David; Toth, Paolo (1999). "Exact Solution of the Quadratic Knapsack Problem". INFORMS Journal on Computing. 11 (2): 125–137. CiteSeerX 10.1.1.22.2818. doi:10.1287/ijoc.11.2.125.
  • Fomeni, Franklin Djeumou; Letchford, Adam N. (2014). "A Dynamic Programming Heuristic for the Quadratic Knapsack Problem" (PDF). INFORMS Journal on Computing. 26 (1): 173–182. doi:10.1287/ijoc.2013.0555. S2CID 15570245.
  • Forrester, Richard J.; Adams, Warren P.; Hadavas, Paul T. (2009). "Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem". Naval Research Logistics. 57: 1–12. doi:10.1002/nav.20364. S2CID 121015443.

harvard.edu

ui.adsabs.harvard.edu

  • C., Witzgall (1975). "Mathematical methods of site selection for Electronic Message Systems (EMS)". NBS Internal Report. 76: 18321. Bibcode:1975STIN...7618321W. doi:10.6028/nbs.ir.75-737.

lancs.ac.uk

eprints.lancs.ac.uk

orsj.org

psu.edu

citeseerx.ist.psu.edu

semanticscholar.org

api.semanticscholar.org

utwente.nl

research.utwente.nl