Quotient graph (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Quotient graph" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
6,505th place
9,776th place
11th place
8th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Sanders, Peter; Schulz, Christian (2013), "High quality graph partitioning", Graph partitioning and graph clustering, Contemp. Math., vol. 588, Amer. Math. Soc., Providence, RI, pp. 1–17, doi:10.1090/conm/588/11700, MR 3074893.
  • Gardiner, A. (1974), "Antipodal covering graphs", Journal of Combinatorial Theory, Series B, 16 (3): 255–273, doi:10.1016/0095-8956(74)90072-0, MR 0340090.
  • Faria, L.; de Figueiredo, C. M. H.; Mendonça, C. F. X. (2001), "Splitting number is NP-complete", Discrete Applied Mathematics, 108 (1–2): 65–83, doi:10.1016/S0166-218X(00)00220-1, MR 1804713.

doi.org (Global: 2nd place; English: 2nd place)

  • Sanders, Peter; Schulz, Christian (2013), "High quality graph partitioning", Graph partitioning and graph clustering, Contemp. Math., vol. 588, Amer. Math. Soc., Providence, RI, pp. 1–17, doi:10.1090/conm/588/11700, MR 3074893.
  • Bloem, Roderick; Gabow, Harold N.; Somenzi, Fabio (January 2006), "An algorithm for strongly connected component analysis in n log n symbolic steps", Formal Methods in System Design, 28 (1): 37–56, doi:10.1007/s10703-006-4341-z, S2CID 11747844.
  • Gardiner, A. (1974), "Antipodal covering graphs", Journal of Combinatorial Theory, Series B, 16 (3): 255–273, doi:10.1016/0095-8956(74)90072-0, MR 0340090.
  • Faria, L.; de Figueiredo, C. M. H.; Mendonça, C. F. X. (2001), "Splitting number is NP-complete", Discrete Applied Mathematics, 108 (1–2): 65–83, doi:10.1016/S0166-218X(00)00220-1, MR 1804713.

kit.edu (Global: 6,505th place; English: 9,776th place)

publikationen.bibliothek.kit.edu

  • Sanders, Peter; Schulz, Christian (2013), "High quality graph partitioning", Graph partitioning and graph clustering, Contemp. Math., vol. 588, Amer. Math. Soc., Providence, RI, pp. 1–17, doi:10.1090/conm/588/11700, MR 3074893.

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org