Gupta, Parth; Ndiaye, Ndiame; Norin, Sergey; Wei, Louis (2024-07-26). "Optimizing the CGMS upper bound on Ramsey numbers". arXiv:2407.19026 [math.CO].
Bohman, Tom; Keevash, Peter (2020-11-17). "Dynamic concentration of the triangle-free process". Random Structures and Algorithms. 58 (2): 221–293. arXiv:1302.5963. doi:10.1002/rsa.20973.
Li, Zhengyu; Duggan, Conor; Bright, Curtis; Ganesh, Vijay (2025). "Verified Certificates via SAT and Computer Algebra Systems for the Ramsey R(3,8) and R(3,9) Problems". Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence. pp. 2619–2627. arXiv:2502.06055. doi:10.24963/ijcai.2025/292. ISBN978-1-956792-06-5.
Li, Zhengyu; Duggan, Conor; Bright, Curtis; Ganesh, Vijay (2025). "Verified Certificates via SAT and Computer Algebra Systems for the Ramsey R(3,8) and R(3,9) Problems". Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence. pp. 2619–2627. arXiv:2502.06055. doi:10.24963/ijcai.2025/292. ISBN978-1-956792-06-5.
Gauthier, Thibault; Brown, Chad E (2024). "A formal proof of R(4,5)=25". arXiv:2404.01761 [cs.LO].
Bohman, Tom; Keevash, Peter (2020-11-17). "Dynamic concentration of the triangle-free process". Random Structures and Algorithms. 58 (2): 221–293. arXiv:1302.5963. doi:10.1002/rsa.20973.
Erdös, Paul (1990), Nešetřil, Jaroslav; Rödl, Vojtěch (eds.), "Problems and Results on Graphs and Hypergraphs: Similarities and Differences", Mathematics of Ramsey Theory, Algorithms and Combinatorics, vol. 5, Berlin, Heidelberg: Springer, pp. 12–28, doi:10.1007/978-3-642-72905-8_2, ISBN978-3-642-72905-8
Li, Zhengyu; Duggan, Conor; Bright, Curtis; Ganesh, Vijay (2025). "Verified Certificates via SAT and Computer Algebra Systems for the Ramsey R(3,8) and R(3,9) Problems". Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence. pp. 2619–2627. arXiv:2502.06055. doi:10.24963/ijcai.2025/292. ISBN978-1-956792-06-5.
Li, Zhengyu; Duggan, Conor; Bright, Curtis; Ganesh, Vijay (2025). "Verified Certificates via SAT and Computer Algebra Systems for the Ramsey R(3,8) and R(3,9) Problems". Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence. pp. 2619–2627. arXiv:2502.06055. doi:10.24963/ijcai.2025/292. ISBN978-1-956792-06-5.
Beck, József (1990). "On Size Ramsey Number of Paths, Trees and Circuits. II". In Nešetřil, J.; Rödl, V. (eds.). Mathematics of Ramsey Theory. Algorithms and Combinatorics. Vol. 5. Springer, Berlin, Heidelberg. pp. 34–45. doi:10.1007/978-3-642-72905-8_4. ISBN978-3-642-72907-2.