Representation theory of the Lorentz group (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Representation theory of the Lorentz group" in English language version.

refsWebsite
Global rank English rank
6th place
6th place
2nd place
2nd place
5th place
5th place
11th place
8th place
18th place
17th place
26th place
20th place
69th place
59th place
451st place
277th place
4th place
4th place
3,325th place
2,396th place
3rd place
3rd place
621st place
380th place
8,783rd place
low place

ams.org

mathscinet.ams.org

archive.org

arxiv.org

  • For part of their representation theory, see Bekaert & Boulanger (2006), which is dedicated to representation theory of the Poincare group. These representations are obtained by the method of induced representations or, in physics parlance, the method of the little group, pioneered by Wigner in 1939 for this type of group and put on firm mathematical footing by George Mackey in the fifties. Bekaert, X.; Boulanger, N. (2006), "The unitary representations of the Poincare group in any spacetime dimension", arXiv:hep-th/0611263 Expanded version of the lectures presented at the second Modave summer school in mathematical physics (Belgium, August 2006).
  • Bekaert & Boulanger 2006 Bekaert, X.; Boulanger, N. (2006), "The unitary representations of the Poincare group in any spacetime dimension", arXiv:hep-th/0611263 Expanded version of the lectures presented at the second Modave summer school in mathematical physics (Belgium, August 2006).
  • Bekaert & Boulanger 2006 p.4. Bekaert, X.; Boulanger, N. (2006), "The unitary representations of the Poincare group in any spacetime dimension", arXiv:hep-th/0611263 Expanded version of the lectures presented at the second Modave summer school in mathematical physics (Belgium, August 2006).
  • Gonzalez, P. A.; Vasquez, Y. (2014), "Dirac Quasinormal Modes of New Type Black Holes in New Massive Gravity", Eur. Phys. J. C, 74:2969 (7): 3, arXiv:1404.5371, Bibcode:2014EPJC...74.2969G, doi:10.1140/epjc/s10052-014-2969-1, ISSN 1434-6044, S2CID 118725565
  • Bekaert & Boulanger 2006, p. 48. Bekaert, X.; Boulanger, N. (2006), "The unitary representations of the Poincare group in any spacetime dimension", arXiv:hep-th/0611263 Expanded version of the lectures presented at the second Modave summer school in mathematical physics (Belgium, August 2006).

books.google.com

doi.org

harvard.edu

ui.adsabs.harvard.edu

jstor.org

mathnet.ru

nasonline.org

nih.gov

ncbi.nlm.nih.gov

pubmed.ncbi.nlm.nih.gov

semanticscholar.org

api.semanticscholar.org

worldcat.org

search.worldcat.org

  • Hall (2015, Section 4.4.)

    One says that a group has the complete reducibility property if every representation decomposes as a direct sum of irreducible representations.

    Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Combine Weinberg (2002, Equations 5.6.7–8, 5.6.14–15) with Hall (2015, Proposition 4.18) about Lie algebra representations of group tensor product representations. Weinberg, S. (2002) [1995], Foundations, The Quantum Theory of Fields, vol. 1, Cambridge: Cambridge University Press, ISBN 978-0-521-55001-7 Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Any discrete normal subgroup of a path connected group G is contained in the center Z of G.

    Hall 2015, Exercise 11, chapter 1.

    Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • By contrast, there is a trick, also called Weyl's unitarian trick, but unrelated to the unitarian trick of above showing that all finite-dimensional representations are, or can be made, unitary. If (Π, V) is a finite-dimensional representation of a compact Lie group G and if (·, ·) is any inner product on V, define a new inner product (·, ·)Π by (x, y)Π = ∫G(Π(g)x, Π(g)y) (g), where μ is Haar measure on G. Then Π is unitary with respect to (·, ·)Π. See Hall (2015, Theorem 4.28.)

    Another consequence is that every compact Lie group has the complete reducibility property, meaning that all its finite-dimensional representations decompose as a direct sum of irreducible representations. Hall (2015, Definition 4.24., Theorem 4.28.)

    It is also true that there are no infinite-dimensional irreducible unitary representations of compact Lie groups, stated, but not proved in Greiner & Müller (1994, Section 15.2.).

    Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285 Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285 Greiner, W.; Müller, B. (1994), Quantum Mechanics: Symmetries (2nd ed.), Springer, ISBN 978-3540580805
  • This is one of the conclusions of Cartan's theorem, the theorem of the highest weight.
    Hall (2015, Theorems 9.4–5.) Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Section 8.2 The root system is the union of two copies of A1, where each copy resides in its own dimensions in the embedding vector space. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • These facts can be found in most introductory mathematics and physics texts. See e.g. Rossmann (2002), Hall (2015) and Tung (1985). Rossmann, Wulf (2002), Lie Groups – An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford Science Publications, ISBN 0-19-859683-9 Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285 Tung, Wu-Ki (1985), Group Theory in Physics (1st ed.), New Jersey·London·Singapore·Hong Kong: World Scientific, ISBN 978-9971966577
  • Hall (2015, Theorem 4.34 and following discussion.) Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Appendix D2. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Coleman 1989, p. 30. Coleman, A. J. (1989), "The Greatest Mathematical Paper of All Time", The Mathematical Intelligencer, 11 (3): 29–38, doi:10.1007/BF03025189, ISSN 0343-6993, S2CID 35487310
  • Coleman 1989, p. 34. Coleman, A. J. (1989), "The Greatest Mathematical Paper of All Time", The Mathematical Intelligencer, 11 (3): 29–38, doi:10.1007/BF03025189, ISSN 0343-6993, S2CID 35487310
  • Hall 2015, Theorem 2.10. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Appendix C.3. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, First displayed equations in section 4.6. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Example 4.10. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Equation 4.2. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Equation before 4.5. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Theorems 9.4–5. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Theorem 10.18. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Gonzalez, P. A.; Vasquez, Y. (2014), "Dirac Quasinormal Modes of New Type Black Holes in New Massive Gravity", Eur. Phys. J. C, 74:2969 (7): 3, arXiv:1404.5371, Bibcode:2014EPJC...74.2969G, doi:10.1140/epjc/s10052-014-2969-1, ISSN 1434-6044, S2CID 118725565
  • Hall 2015, Proposition C.7. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285
  • Hall 2015, Appendix C.2. Hall, Brian C. (2015), Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, ISSN 0072-5285

zenodo.org