Edleston, J., ed. (1850) Correspondence of Sir Isaac Newton and Professor Cotes, … (London, England: John W. Parker), "Letter XCVIII. Cotes to John Smith." (1708 February 10), pp. 197–200.
books.google.com
Harmonia mensurarum contains a chapter of comments on Cotes' work by Robert Smith. On page 95, Smith gives the value of 1 radian for the first time. See: Roger Cotes with Robert Smith, ed., Harmonia mensurarum … (Cambridge, England: 1722), chapter: Editoris notæ ad Harmoniam mensurarum, top of page 95. From page 95: After stating that 180° corresponds to a length of π (3.14159…) along a unit circle (i.e., π radians), Smith writes: "Unde Modulus Canonis Trigonometrici prodibit 57.2957795130 &c. " (Whence the conversion factor of trigonometric measure, 57.2957795130… [degrees per radian], will appear.)
Roger Cotes with Robert Smith, ed., Harmonia mensurarum … (Cambridge, England: 1722), chapter: "Theoremata tum logometrica tum triogonometrica datarum fluxionum fluentes exhibentia, per methodum mensurarum ulterius extensam" (Theorems, some logorithmic, some trigonometric, which yield the fluents of given fluxions by the method of measures further developed), pages 113-114.
Roger Cotes with Robert Smith, ed., Harmonia mensurarum … (Cambridge, England: 1722), chapter: "Aestimatio errorum in mixta mathesis per variationes partium trianguli plani et sphaerici" Harmonia mensurarum ... , pages 1-22, see especially page 22. From page 22: "Sit p locus Objecti alicujus ex Observatione prima definitus, … ejus loco tutissime haberi potest." (Let p be the location of some object defined by observation, q, r, s, the locations of the same object from subsequent observations. Let there also be weights P, Q, R, S reciprocally proportional to the displacements that may arise from the errors in the single observations, and that are given from the given limits of error; and the weights P, Q, R, S are conceived as being placed at p, q, r, s, and their center of gravity Z is found: I say the point Z is the most probable location of the object, and may be most safely had for its true place. [Ronald Gowing, 1983, p. 107])
In Logometria, Cotes evaluated e, the base of natural logarithms, to 12 decimal places. See: Roger Cotes (1714) "Logometria," Philosophical Transactions of the Royal Society of London, 29 (338) : 5-45; see especially the bottom of page 10. From page 10: "Porro eadem ratio est inter 2,718281828459 &c et 1, … " (Furthermore, the same ratio is between 2.718281828459… and 1, … )
Cotes presented his method in a letter to William Jones, dated 5 May 1716. An excerpt from the letter which discusses the method was published in: [Anon.] (1722), Book review: "An account of a book, intitled, Harmonia Mensurarum, … ," Philosophical Transactions of the Royal Society of London, 32 : 139-150 ; see pages 146-148.