Rotations in 4-dimensional Euclidean space (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Rotations in 4-dimensional Euclidean space" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
low place
low place
102nd place
76th place
451st place
277th place
low place
low place
1,871st place
1,234th place
18th place
17th place
6th place
6th place
120th place
125th place

ams.org

mathscinet.ams.org

archive.org

arxiv.org

doi.org

  • Dorst 2019, pp. 14−16, 6.2. Isoclinic Rotations in 4D. Dorst, Leo (2019). "Conformal Villarceau Rotors". Advances in Applied Clifford Algebras. 29 (44). doi:10.1007/s00006-019-0960-5. S2CID 253592159.
  • Perez-Gracia, Alba; Thomas, Federico (2017). "On Cayley's Factorization of 4D Rotations and Applications" (PDF). Adv. Appl. Clifford Algebras. 27: 523–538. doi:10.1007/s00006-016-0683-9. hdl:2117/113067. S2CID 12350382.
  • Rao, Dhvanita R.; Kolte, Sagar (2018). "Odd orthogonal matrices and the non-injectivity of the Vaserstein symbol". Journal of Algebra. 510: 458–468. doi:10.1016/j.jalgebra.2018.05.026. MR 3828791.
  • Pinkall, U. (1985). "Hopf tori in S3" (PDF). Invent. Math. 81 (2): 379–386. Bibcode:1985InMat..81..379P. doi:10.1007/bf01389060. S2CID 120226082. Retrieved 7 April 2015.

ed.ac.uk

maths.ed.ac.uk

handle.net

hdl.handle.net

  • Perez-Gracia, Alba; Thomas, Federico (2017). "On Cayley's Factorization of 4D Rotations and Applications" (PDF). Adv. Appl. Clifford Algebras. 27: 523–538. doi:10.1007/s00006-016-0683-9. hdl:2117/113067. S2CID 12350382.

harvard.edu

ui.adsabs.harvard.edu

researchgate.net

semanticscholar.org

api.semanticscholar.org

  • Dorst 2019, pp. 14−16, 6.2. Isoclinic Rotations in 4D. Dorst, Leo (2019). "Conformal Villarceau Rotors". Advances in Applied Clifford Algebras. 29 (44). doi:10.1007/s00006-019-0960-5. S2CID 253592159.
  • Perez-Gracia, Alba; Thomas, Federico (2017). "On Cayley's Factorization of 4D Rotations and Applications" (PDF). Adv. Appl. Clifford Algebras. 27: 523–538. doi:10.1007/s00006-016-0683-9. hdl:2117/113067. S2CID 12350382.
  • Pinkall, U. (1985). "Hopf tori in S3" (PDF). Invent. Math. 81 (2): 379–386. Bibcode:1985InMat..81..379P. doi:10.1007/bf01389060. S2CID 120226082. Retrieved 7 April 2015.

upc.edu

upcommons.upc.edu

  • Perez-Gracia, Alba; Thomas, Federico (2017). "On Cayley's Factorization of 4D Rotations and Applications" (PDF). Adv. Appl. Clifford Algebras. 27: 523–538. doi:10.1007/s00006-016-0683-9. hdl:2117/113067. S2CID 12350382.

virtualmathmuseum.org