SL (complexity) (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "SL (complexity)" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
102nd place
76th place
207th place
136th place
4,983rd place
8,002nd place

ams.org

mathscinet.ams.org

  • Lewis, Harry R.; Papadimitriou, Christos H. (1980), "Symmetric space-bounded computation", Proceedings of the Seventh International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 85, Berlin: Springer, pp. 374–384, doi:10.1007/3-540-10003-2_85, MR 0589018. Journal version published as Lewis, Harry R.; Papadimitriou, Christos H. (1982), "Symmetric space-bounded computation", Theoretical Computer Science, 19 (2): 161–187, doi:10.1016/0304-3975(82)90058-5, MR 0666539
  • Àlvarez, Carme; Greenlaw, Raymond (2000), "A compendium of problems complete for symmetric logarithmic space", Computational Complexity, 9 (2): 123–145, doi:10.1007/PL00001603, MR 1809688.
  • Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4: 177–192, doi:10.1016/S0022-0000(70)80006-X, hdl:10338.dmlcz/120475, MR 0266702.
  • Aleliunas, Romas; Karp, Richard M.; Lipton, Richard J.; Lovász, László; Rackoff, Charles (1979), "Random walks, universal traversal sequences, and the complexity of maze problems", Proceedings of 20th Annual Symposium on Foundations of Computer Science, New York: IEEE, pp. 218–223, doi:10.1109/SFCS.1979.34, MR 0598110.
  • Borodin, Allan; Cook, Stephen A.; Dymond, Patrick W.; Ruzzo, Walter L.; Tompa, Martin (1989), "Two applications of inductive counting for complementation problems", SIAM Journal on Computing, 18 (3): 559–578, CiteSeerX 10.1.1.394.1662, doi:10.1137/0218038, MR 0996836.
  • Nisan, Noam; Ta-Shma, Amnon (1995), "Symmetric logspace is closed under complement", Chicago Journal of Theoretical Computer Science, Article 1, MR 1345937, ECCC TR94-003.
  • Reingold, Omer (2008), "Undirected connectivity in log-space", Journal of the ACM, 55 (4): 1–24, doi:10.1145/1391289.1391291, MR 2445014.
  • Trifonov, Vladimir (2008), "An O(log n log log n) space algorithm for undirected st-connectivity", SIAM Journal on Computing, 38 (2): 449–483, doi:10.1137/050642381, MR 2411031.

doi.org

  • Lewis, Harry R.; Papadimitriou, Christos H. (1980), "Symmetric space-bounded computation", Proceedings of the Seventh International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 85, Berlin: Springer, pp. 374–384, doi:10.1007/3-540-10003-2_85, MR 0589018. Journal version published as Lewis, Harry R.; Papadimitriou, Christos H. (1982), "Symmetric space-bounded computation", Theoretical Computer Science, 19 (2): 161–187, doi:10.1016/0304-3975(82)90058-5, MR 0666539
  • Àlvarez, Carme; Greenlaw, Raymond (2000), "A compendium of problems complete for symmetric logarithmic space", Computational Complexity, 9 (2): 123–145, doi:10.1007/PL00001603, MR 1809688.
  • Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4: 177–192, doi:10.1016/S0022-0000(70)80006-X, hdl:10338.dmlcz/120475, MR 0266702.
  • Aleliunas, Romas; Karp, Richard M.; Lipton, Richard J.; Lovász, László; Rackoff, Charles (1979), "Random walks, universal traversal sequences, and the complexity of maze problems", Proceedings of 20th Annual Symposium on Foundations of Computer Science, New York: IEEE, pp. 218–223, doi:10.1109/SFCS.1979.34, MR 0598110.
  • Borodin, Allan; Cook, Stephen A.; Dymond, Patrick W.; Ruzzo, Walter L.; Tompa, Martin (1989), "Two applications of inductive counting for complementation problems", SIAM Journal on Computing, 18 (3): 559–578, CiteSeerX 10.1.1.394.1662, doi:10.1137/0218038, MR 0996836.
  • Nisan, Noam; Szemerédi, Endre; Wigderson, Avi (1992), "Undirected connectivity in O(log1.5n) space", Proceedings of 33rd Annual Symposium on Foundations of Computer Science, pp. 24–29, doi:10.1109/SFCS.1992.267822.
  • Reingold, Omer (2008), "Undirected connectivity in log-space", Journal of the ACM, 55 (4): 1–24, doi:10.1145/1391289.1391291, MR 2445014.
  • Trifonov, Vladimir (2008), "An O(log n log log n) space algorithm for undirected st-connectivity", SIAM Journal on Computing, 38 (2): 449–483, doi:10.1137/050642381, MR 2411031.

handle.net

hdl.handle.net

psu.edu

citeseerx.ist.psu.edu

weizmann.ac.il

eccc.weizmann.ac.il

  • Nisan, Noam; Ta-Shma, Amnon (1995), "Symmetric logspace is closed under complement", Chicago Journal of Theoretical Computer Science, Article 1, MR 1345937, ECCC TR94-003.