Schönhage–Strassen algorithm (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Schönhage–Strassen algorithm" in English language version.

refsWebsite
Global rank English rank
low place
low place
2nd place
2nd place
11th place
8th place
120th place
125th place
1st place
1st place
6th place
6th place
4,903rd place
3,679th place
69th place
59th place
18th place
17th place
6,328th place
4,345th place
low place
low place
low place
low place
207th place
136th place
5th place
5th place
1,185th place
840th place
1,031st place
879th place
451st place
277th place
low place
low place
5,032nd place
3,357th place

acm.org (Global: 1,185th place; English: 840th place)

dl.acm.org

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

archive.org (Global: 6th place; English: 6th place)

archives-ouvertes.fr (Global: 1,031st place; English: 879th place)

hal.archives-ouvertes.fr

arxiv.org (Global: 69th place; English: 59th place)

doi.org (Global: 2nd place; English: 2nd place)

doi.org

  • Schönhage, Arnold; Strassen, Volker (1971). "Schnelle Multiplikation großer Zahlen" [Fast multiplication of large numbers]. Computing (in German). 7 (3–4): 281–292. doi:10.1007/BF02242355. S2CID 9738629.
  • Karatsuba multiplication has asymptotic complexity of about and Toom–Cook multiplication has asymptotic complexity of about

    Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.{{cite journal}}: CS1 maint: article number as page number (link)

    A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine

    Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)

    The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:

    "FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.

    "MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.

    "MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.

  • Fürer's algorithm has asymptotic complexity
    Fürer, Martin (2007). "Faster Integer Multiplication" (PDF). Proc. STOC '07. Symposium on Theory of Computing, San Diego, Jun 2007. pp. 57–66. Archived from the original (PDF) on 2007-03-05.
    Fürer, Martin (2009). "Faster Integer Multiplication". SIAM Journal on Computing. 39 (3): 979–1005. doi:10.1137/070711761. ISSN 0097-5397.

    Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.

  • Harvey, David; van der Hoeven, Joris (2021). "Integer multiplication in time " (PDF). Annals of Mathematics. Second Series. 193 (2): 563–617. doi:10.4007/annals.2021.193.2.4. MR 4224716. S2CID 109934776.

dx.doi.org

gmplib.org (Global: low place; English: low place)

hal.science (Global: low place; English: low place)

inria.hal.science

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

iacr.org (Global: 5,032nd place; English: 3,357th place)

eprint.iacr.org

inria.fr (Global: 4,903rd place; English: 3,679th place)

hal.inria.fr

gitlab.inria.fr

  • This method is used in INRIA's ECM library.

loria.fr (Global: low place; English: low place)

members.loria.fr

  • "ECMNET". members.loria.fr. Retrieved 2023-04-09.

psu.edu (Global: 207th place; English: 136th place)

cse.psu.edu

researchgate.net (Global: 120th place; English: 125th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Schönhage, Arnold; Strassen, Volker (1971). "Schnelle Multiplikation großer Zahlen" [Fast multiplication of large numbers]. Computing (in German). 7 (3–4): 281–292. doi:10.1007/BF02242355. S2CID 9738629.
  • Karatsuba multiplication has asymptotic complexity of about and Toom–Cook multiplication has asymptotic complexity of about

    Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.{{cite journal}}: CS1 maint: article number as page number (link)

    A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine

    Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)

    The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:

    "FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.

    "MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.

    "MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.

  • Fürer's algorithm has asymptotic complexity
    Fürer, Martin (2007). "Faster Integer Multiplication" (PDF). Proc. STOC '07. Symposium on Theory of Computing, San Diego, Jun 2007. pp. 57–66. Archived from the original (PDF) on 2007-03-05.
    Fürer, Martin (2009). "Faster Integer Multiplication". SIAM Journal on Computing. 39 (3): 979–1005. doi:10.1137/070711761. ISSN 0097-5397.

    Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.

  • Harvey, David; van der Hoeven, Joris (2021). "Integer multiplication in time " (PDF). Annals of Mathematics. Second Series. 193 (2): 563–617. doi:10.4007/annals.2021.193.2.4. MR 4224716. S2CID 109934776.

tu-darmstadt.de (Global: low place; English: low place)

cdc.informatik.tu-darmstadt.de

usyd.edu.au (Global: 6,328th place; English: 4,345th place)

magma.maths.usyd.edu.au

web.archive.org (Global: 1st place; English: 1st place)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org