Analysis of information sources in references of the Wikipedia article "Schönhage–Strassen algorithm" in English language version.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Van Meter, Rodney; Itoh, Kohei M. (2005). "Fast Quantum Modular Exponentiation". Physical Review. 71 (5): 052320. arXiv:quant-ph/0408006. Bibcode:2005PhRvA..71e2320V. doi:10.1103/PhysRevA.71.052320. S2CID 14983569.
A discussion of practical crossover points between various algorithms can be found in: Overview of Magma V2.9 Features, arithmetic section Archived 2006-08-20 at the Wayback Machine
Luis Carlos Coronado García, "Can Schönhage multiplication speed up the RSA encryption or decryption? Archived", University of Technology, Darmstadt (2005)
The GNU Multi-Precision Library uses it for values of at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal digits), depending on architecture. See:
"FFT Multiplication (GNU MP 6.2.1)". gmplib.org. Retrieved 2021-07-20.
"MUL_FFT_THRESHOLD". GMP developers' corner. Archived from the original on 24 November 2010. Retrieved 3 November 2011.
"MUL_FFT_THRESHOLD". gmplib.org. Retrieved 2021-07-20.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.
Fürer's algorithm is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. See: Covanov, Svyatoslav; Mohajerani, Davood; Moreno Maza, Marc; Wang, Linxiao (2019-07-08). "Big Prime Field FFT on Multi-core Processors". Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation (PDF). Beijing China: ACM. pp. 106–113. doi:10.1145/3326229.3326273. ISBN 978-1-4503-6084-5. S2CID 195848601.