Essig, Rouven; et al. (2022). "Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade". arXiv:2203.08297 [hep-ph].
SuperCDMS Collaboration; et al. (2022). "A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility". arXiv:2203.08463 [physics.ins-det].
Derenzo, S.; Bourret, E.; Frank-Rotsch, C.; Hanrahan, S.; Garcia-Sciveres, M. (2021). "How silicon and boron dopants govern the cryogenic scintillation properties of n-type GaAs". Nuclear Instruments and Methods in Physics Research Section A. 989: 164957. arXiv:2012.07550. Bibcode:2021NIMPA.98964957D. doi:10.1016/j.nima.2020.164957. S2CID229158562.
Guo et al. 2009. Guo, Jimei; Bücherl, Thomas; Zou, Yubin; Guo, Zhiyu; Tang, Guoyou (2009). "Comparison of the performance of different converters for neutron radiography and tomography using fission neutrons". Nuclear Instruments and Methods in Physics Research Section A. 605 (1–2): 69–72. Bibcode:2009NIMPA.605...69G. doi:10.1016/j.nima.2009.01.129.
Luskin et al. (2023). “Large active-area superconducting microwire detector array with single-photon sensitivity in the near-infrared”, Appl. Phys. Lett. 122, 243506. https://doi.org/10.1063/5.0150282
Shibuya et al. 2002. Shibuya, K; Koshimizu, M; Takeoka, Y; Asai, K (2002). "Scintillation properties of (C6H13NH3)2PbI4: Exciton luminescence of an organic/inorganic multiple quantum well structure compound". Nuclear Instruments and Methods in Physics Research A. 194 (2): 207–212. doi:10.1016/S0168-583X(02)00671-7.
van Eijk et al. 2008. van Eijk, Carel; de Haas, Johan T. M.; Rodnyi, Piotr; Khodyuk, Ivan; Shibuya, Kengo; Nishikido, Fumihiko; Koshimizu, Masanori (2008). "Scintillation properties of (C6H13NH3)2PbI4: Exciton luminescence of an organic/inorganic multiple quantum well structure compound". IEEE Nuclear Science Symposium Conference Record. N69 (3): 3525–3528. doi:10.1109/NSSMIC.2008.4775096. S2CID43279318.
Aozhen et al. 2018. Aozhen, X.; Hettiarachchi, C.; Witkowski, M.; Drozdowski, W.; Birowosuto, M. D.; Wang, H.; Dang, C. (2018). "Thermal Quenching and Dose Studies of X-ray Luminescence in Single Crystals of Halide Perovskites". The Journal of Physical Chemistry C. 122 (28): 16265–16273. doi:10.1021/acs.jpcc.8b03622. S2CID103801315.
Derenzo, S.; Bourret, E.; Frank-Rotsch, C.; Hanrahan, S.; Garcia-Sciveres, M. (2021). "How silicon and boron dopants govern the cryogenic scintillation properties of n-type GaAs". Nuclear Instruments and Methods in Physics Research Section A. 989: 164957. arXiv:2012.07550. Bibcode:2021NIMPA.98964957D. doi:10.1016/j.nima.2020.164957. S2CID229158562.
Spitzer, W. G.; Whelan, J. M. (1959). "Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide". Physical Review. 114 (1): 59–63. Bibcode:1959PhRv..114...59S. doi:10.1103/PhysRev.114.59.
Moszyński et al. 2005. Moszyński, M.; Balcerzyk, M.; Czarnacki, W.; Nassalski, A.; Szczęśniak, T.; Kraus, H.; Mikhailik, V. B.; Solskii, I. M. (2005). "Characterization of CaWO4 scintillator at room and liquid nitrogen temperatures". Nuclear Instruments and Methods in Physics Research Section A. 553 (2): 578–591. Bibcode:2005NIMPA.553..578M. doi:10.1016/j.nima.2005.07.052.
Guo et al. 2009. Guo, Jimei; Bücherl, Thomas; Zou, Yubin; Guo, Zhiyu; Tang, Guoyou (2009). "Comparison of the performance of different converters for neutron radiography and tomography using fission neutrons". Nuclear Instruments and Methods in Physics Research Section A. 605 (1–2): 69–72. Bibcode:2009NIMPA.605...69G. doi:10.1016/j.nima.2009.01.129.
Derenzo, S.; Bourret, E.; Frank-Rotsch, C.; Hanrahan, S.; Garcia-Sciveres, M. (2021). "How silicon and boron dopants govern the cryogenic scintillation properties of n-type GaAs". Nuclear Instruments and Methods in Physics Research Section A. 989: 164957. arXiv:2012.07550. Bibcode:2021NIMPA.98964957D. doi:10.1016/j.nima.2020.164957. S2CID229158562.
Spitzer, W. G.; Whelan, J. M. (1959). "Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide". Physical Review. 114 (1): 59–63. Bibcode:1959PhRv..114...59S. doi:10.1103/PhysRev.114.59.
Moszyński et al. 2005. Moszyński, M.; Balcerzyk, M.; Czarnacki, W.; Nassalski, A.; Szczęśniak, T.; Kraus, H.; Mikhailik, V. B.; Solskii, I. M. (2005). "Characterization of CaWO4 scintillator at room and liquid nitrogen temperatures". Nuclear Instruments and Methods in Physics Research Section A. 553 (2): 578–591. Bibcode:2005NIMPA.553..578M. doi:10.1016/j.nima.2005.07.052.
van Eijk et al. 2008. van Eijk, Carel; de Haas, Johan T. M.; Rodnyi, Piotr; Khodyuk, Ivan; Shibuya, Kengo; Nishikido, Fumihiko; Koshimizu, Masanori (2008). "Scintillation properties of (C6H13NH3)2PbI4: Exciton luminescence of an organic/inorganic multiple quantum well structure compound". IEEE Nuclear Science Symposium Conference Record. N69 (3): 3525–3528. doi:10.1109/NSSMIC.2008.4775096. S2CID43279318.
Aozhen et al. 2018. Aozhen, X.; Hettiarachchi, C.; Witkowski, M.; Drozdowski, W.; Birowosuto, M. D.; Wang, H.; Dang, C. (2018). "Thermal Quenching and Dose Studies of X-ray Luminescence in Single Crystals of Halide Perovskites". The Journal of Physical Chemistry C. 122 (28): 16265–16273. doi:10.1021/acs.jpcc.8b03622. S2CID103801315.
Derenzo, S.; Bourret, E.; Frank-Rotsch, C.; Hanrahan, S.; Garcia-Sciveres, M. (2021). "How silicon and boron dopants govern the cryogenic scintillation properties of n-type GaAs". Nuclear Instruments and Methods in Physics Research Section A. 989: 164957. arXiv:2012.07550. Bibcode:2021NIMPA.98964957D. doi:10.1016/j.nima.2020.164957. S2CID229158562.