Shortest path problem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Shortest path problem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
5th place
5th place
3rd place
3rd place
32nd place
21st place
153rd place
151st place
274th place
309th place
6,413th place
4,268th place
7th place
7th place
9th place
13th place
18th place
17th place
207th place
136th place
9,352nd place
5,696th place

aaai.org (Global: 9,352nd place; English: 5,696th place)

arxiv.org (Global: 69th place; English: 59th place)

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Ortega-Arranz, Hector; Llanos, Diego R.; Gonzalez-Escribano, Arturo (2015). The Shortest-Path Problem. Synthesis Lectures on Theoretical Computer Science. Cham: Springer. doi:10.1007/978-3-031-02574-7. ISBN 978-3-031-01446-8.
  • Dürr, Christoph; Heiligman, Mark; Høyer, Peter; Mhalla, Mehdi (January 2006). "Quantum query complexity of some graph problems". SIAM Journal on Computing. 35 (6): 1310–1328. arXiv:quant-ph/0401091. doi:10.1137/050644719. ISSN 0097-5397. S2CID 14253494.
  • Dial, Robert B. (1969). "Algorithm 360: Shortest-Path Forest with Topological Ordering [H]". Communications of the ACM. 12 (11): 632–633. doi:10.1145/363269.363610. S2CID 6754003.
  • Hoceini, S.; A. Mellouk; Y. Amirat (2005). "K-Shortest Paths Q-Routing: A New QoS Routing Algorithm in Telecommunication Networks". Networking - ICN 2005, Lecture Notes in Computer Science, Vol. 3421. Vol. 3421. Springer, Berlin, Heidelberg. pp. 164–172. doi:10.1007/978-3-540-31957-3_21. ISBN 978-3-540-25338-9.
  • Chen, Danny Z. (December 1996). "Developing algorithms and software for geometric path planning problems". ACM Computing Surveys. 28 (4es). Article 18. doi:10.1145/242224.242246. S2CID 11761485.
  • Kroger, Martin (2005). "Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems". Computer Physics Communications. 168 (3): 209–232. Bibcode:2005CoPhC.168..209K. doi:10.1016/j.cpc.2005.01.020.
  • Lozano, Leonardo; Medaglia, Andrés L (2013). "On an exact method for the constrained shortest path problem". Computers & Operations Research. 40 (1): 378–384. doi:10.1016/j.cor.2012.07.008.
  • Osanlou, Kevin; Bursuc, Andrei; Guettier, Christophe; Cazenave, Tristan; Jacopin, Eric (2019). "Optimal Solving of Constrained Path-Planning Problems with Graph Convolutional Networks and Optimized Tree Search". 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3519–3525. arXiv:2108.01036. doi:10.1109/IROS40897.2019.8968113. ISBN 978-1-7281-4004-9. S2CID 210706773.
  • Cherkassky, Boris V.; Goldberg, Andrew V. (1999-06-01). "Negative-cycle detection algorithms". Mathematical Programming. 85 (2): 277–311. doi:10.1007/s101070050058. ISSN 1436-4646. S2CID 79739.
  • Rajabi-Bahaabadi, Mojtaba; Shariat-Mohaymany, Afshin; Babaei, Mohsen; Ahn, Chang Wook (2015). "Multi-objective path finding in stochastic time-dependent road networks using non-dominated sorting genetic algorithm". Expert Systems with Applications. 42 (12): 5056–5064. doi:10.1016/j.eswa.2015.02.046.
  • Olya, Mohammad Hessam (2014). "Finding shortest path in a combined exponential – gamma probability distribution arc length". International Journal of Operational Research. 21 (1): 25–37. doi:10.1504/IJOR.2014.064020.
  • Olya, Mohammad Hessam (2014). "Applying Dijkstra's algorithm for general shortest path problem with normal probability distribution arc length". International Journal of Operational Research. 21 (2): 143–154. doi:10.1504/IJOR.2014.064541.

ghostarchive.org (Global: 32nd place; English: 21st place)

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

microsoft.com (Global: 153rd place; English: 151st place)

research.microsoft.com

nytimes.com (Global: 7th place; English: 7th place)

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

  • Bar-Noy, Amotz; Schieber, Baruch (1991). "The canadian traveller problem". Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms: 261–270. CiteSeerX 10.1.1.1088.3015.

quantamagazine.org (Global: 6,413th place; English: 4,268th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

springer.com (Global: 274th place; English: 309th place)

link.springer.com

  • Ortega-Arranz, Hector; Llanos, Diego R.; Gonzalez-Escribano, Arturo (2015). The Shortest-Path Problem. Synthesis Lectures on Theoretical Computer Science. Cham: Springer. doi:10.1007/978-3-031-02574-7. ISBN 978-3-031-01446-8.

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

youtube.com (Global: 9th place; English: 13th place)