Analysis of information sources in references of the Wikipedia article "Soil color" in English language version.
As a whole, BC represents between 1 and 6% of the total soil organic carbon. It can reach 35% like in Terra Preta Oxisols (Brazilian Amazonia) (Glaser et al., 1998, 2000) up to 45 % in some chernozemic soils from Germany (Schmidt et al., 1999) and up to 60% in a black Chernozem from Canada (Saskatchewan) (Ponomarenko and Anderson, 1999)
As a whole, BC represents between 1 and 6% of the total soil organic carbon. It can reach 35% like in Terra Preta Oxisols (Brazilian Amazonia) (Glaser et al., 1998, 2000) up to 45 % in some chernozemic soils from Germany (Schmidt et al., 1999) and up to 60% in a black Chernozem from Canada (Saskatchewan) (Ponomarenko and Anderson, 1999)
As a whole, BC represents between 1 and 6% of the total soil organic carbon. It can reach 35% like in Terra Preta Oxisols (Brazilian Amazonia) (Glaser et al., 1998, 2000) up to 45 % in some chernozemic soils from Germany (Schmidt et al., 1999) and up to 60% in a black Chernozem from Canada (Saskatchewan) (Ponomarenko and Anderson, 1999)
{{cite book}}
: CS1 maint: location missing publisher (link)While humus (especially in organomineral form) helps give soils a black color (Duchaufour, 1978), the literature shows correlation between forest and grassland soil color to BC - the blacker the soil the higher its BC content (Schmidt and Noack, 2000)
While humus (especially in organomineral form) helps give soils a black color (Duchaufour, 1978), the literature shows correlation between forest and grassland soil color to BC - the blacker the soil the higher its BC content (Schmidt and Noack, 2000)
{{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: location missing publisher (link)