Analysis of information sources in references of the Wikipedia article "Space launch market competition" in English language version.
...failures have followed in recent years. These problems, combined with the rapid rise of low-cost alternatives such as SpaceX's Falcon 9 rocket, have caused the number of Proton launches in a given year to dwindle from eight or so to just one or two.
Less than eight years after its maiden launch, the Falcon 9 booster has become the most dominant rocket in the world. Modern and efficient, no rocket launched more than the 70m Falcon 9 booster launched last year. Barring catastrophe, no rocket seems likely to launch more this year. In part, SpaceX has achieved this level of efficiency by bringing a Silicon Valley mindset to the aerospace industry. The company seeks to disrupt, take chances
a sense of urgency in Europe about the need to begin flying the Ariane 6 to become more competitive with the likes of SpaceX ... Like ArianeGroup, United Launch Alliance (ULA) has developed a new rocket with the intention to compete with SpaceX.
Initially, SpaceX's competitors looked askance at the concept of vertically landing rockets, but as the company has racked up dozens of successes—and began to fly the same first-stage boosters two and even three times — those attitudes have begun to change. US-based United Launch Alliance has begun exploring how to reuse its rocket engines, China has dozens of new space companies exploring these kinds of reuse technologies, and now Europe also appears to have shifted its stance as well.
Advertised at $56.5 million per launch, Falcon 9 missions to GTO cost almost $15 million less than a ride atop a Chinese Long March 3B
But the Falcon 9 is not just changing the way launch-vehicle providers do business; its reach has gone further, prompting satellite makers and commercial fleet operators to retool business plans in response to the low-cost rocket. In March 2012, Boeing announced the start of a new line of all-electric telecommunications spacecraft, the 702SP, which are designed to launch in pairs on a Falcon 9 v1.1. Anchor customers Asia Broadcast Satellite (ABS) of Hong Kong and Mexico's SatMex plan to loft the first two of four such spacecraft on a Falcon 9.... Using electric rather than chemical propulsion will mean the satellites take months, rather than weeks, to reach their final orbital destination. But because all-electric spacecraft are about 40% lighter than their conventional counterparts, the cost to launch them is considerably less than that for a chemically propelled satellite.
The commercial market for launching telecoms spacecraft is tightly contested, but has become dominated by just a few companies—notably, Europe's Arianespace, which flies the Ariane 5, and International Launch Services (ILS), which markets Russia's Proton vehicle. SpaceX is promising to substantially undercut the existing players on price, and SES, the world's second-largest telecoms satellite operator, believes the incumbents had better take note of the California company's capability. 'The entry of SpaceX into the commercial market is a game-changer'
But starting from SpaceX onward, it all became very different. What really changed, I think, is the cost of access. Prior to SpaceX, not only were launch vehicles expensive, but none of the prices were really known. So if you were an entrepreneur trying to focus, like Planet Labs or Spire, it was pretty daunting. There was no rule of thumb as to what it would cost you and what kind of schedule reliability you could expect.
The Falcon 9 rocket [carried a] Lockheed Martin-built satellite [for the USAF]. SpaceX first won U.S. Air Force certification for national-security space missions in spring 2015, breaking the lock on sensitive satellite launches long held by United Launch Alliance, a joint venture between Boeing Co. and Lockheed Martin Corp.
It's been 15 years to get to this point ... So far, developing this capability has cost SpaceX about $1 billion.
Asia's rising powers are developing indigenous space programmes at a startling pace. Though some hedging behaviour is apparent, most are designed to bolster technological autonomy and augment national prestige. Nevertheless, China and India are both pursuing anti-satellite capabilities. Not yet a full-blown race, both competition and cooperation is possible between Asia's giants.
The Indian space program is a spacefaring success story with demonstrated capability in the design and building of application and scientific satellites, and the means to launch them into desired orbits. The end-to-end mission planning and execution capability comes with a high emphasis on self-reliance. Sounding rockets and small satellite launch vehicles provided the initial experience base for India. This experience was consolidated and applied to realize larger satellite launch vehicles. While many of the launch vehicle technologies were indigenously developed, the foreign acquisition of liquid propulsion technologies did help in catalyzing the development efforts. In this case, launch vehicle concept studies showed the inevitability of using a cryogenic upper stage for geosynchronous Earth orbit missions, which proved to be difficult technically and encountered substantial delays, given the geopolitical situation. However, launch capability matured from development to operational phases, and today, India's Polar Satellite Launch Vehicle and Geosynchronous Satellite Launch Vehicle are in a position to meet both domestic and international market demands.
The United States (US) launch infrastructure is at a crisis point. Human access to space embodied in the Space Shuttle is due to be phased out by 2010. Currently, there are no heavy lift, 100 ton class launchers to support the US national vision for space exploration. Medium and large expendable launch providers, Boeing's Delta IV, and Lockheed-Martin's Atlas V Evolved Expendable Launch Vehicles are so expensive that the Delta no longer carries commercial payloads and the Atlas is unlikely to show significant growth without equally significant cost reductions and commercial traffic growth. This set of circumstances questions US dependence on these launch vehicles for national security purposes. High cost growth also exists with small launch vehicles, such as Pegasus, and the promising new field of small and microsatellites is little developed in the US, while foreign efforts, particularly European, are expanding largely on the availability of low-cost Russian boosters. One bright point is the emerging private sector, which is initially pursuing suborbital or small lift capabilities. Although such vehicles support very limited US Department of Defense or National Aeronautics and Space Administration spaceflight needs, they do offer potential technology demonstration stepping stones to more capable systems needed in the future of both agencies. This article outlines the issues and potential options for the US Government to address these serious shortcomings.
The Tauri Group suggests that space startups turned a major corner in 2015, at least in the eyes of venture capital firms that are now piling money into young space companies with unprecedented gusto. ... he study also found that more than 50 venture capital firms invested in space companies in 2015, signaling that venture capital has warmed to a space industry it has long considered both too risky and too slow to yield returns.
The Indian space program is a spacefaring success story with demonstrated capability in the design and building of application and scientific satellites, and the means to launch them into desired orbits. The end-to-end mission planning and execution capability comes with a high emphasis on self-reliance. Sounding rockets and small satellite launch vehicles provided the initial experience base for India. This experience was consolidated and applied to realize larger satellite launch vehicles. While many of the launch vehicle technologies were indigenously developed, the foreign acquisition of liquid propulsion technologies did help in catalyzing the development efforts. In this case, launch vehicle concept studies showed the inevitability of using a cryogenic upper stage for geosynchronous Earth orbit missions, which proved to be difficult technically and encountered substantial delays, given the geopolitical situation. However, launch capability matured from development to operational phases, and today, India's Polar Satellite Launch Vehicle and Geosynchronous Satellite Launch Vehicle are in a position to meet both domestic and international market demands.
The United States (US) launch infrastructure is at a crisis point. Human access to space embodied in the Space Shuttle is due to be phased out by 2010. Currently, there are no heavy lift, 100 ton class launchers to support the US national vision for space exploration. Medium and large expendable launch providers, Boeing's Delta IV, and Lockheed-Martin's Atlas V Evolved Expendable Launch Vehicles are so expensive that the Delta no longer carries commercial payloads and the Atlas is unlikely to show significant growth without equally significant cost reductions and commercial traffic growth. This set of circumstances questions US dependence on these launch vehicles for national security purposes. High cost growth also exists with small launch vehicles, such as Pegasus, and the promising new field of small and microsatellites is little developed in the US, while foreign efforts, particularly European, are expanding largely on the availability of low-cost Russian boosters. One bright point is the emerging private sector, which is initially pursuing suborbital or small lift capabilities. Although such vehicles support very limited US Department of Defense or National Aeronautics and Space Administration spaceflight needs, they do offer potential technology demonstration stepping stones to more capable systems needed in the future of both agencies. This article outlines the issues and potential options for the US Government to address these serious shortcomings.
Costs of launching military satellites has skyrocketed under contracts the Air Force has given to United Launch Alliance. The average cost for each launch using rockets from Boeing and Lockheed has soared to $420 million, according to an analysis by the Government Accountability Office.
Due to the Block 5's reusability, SpaceX has lowered the standard price of a Falcon 9 launch from $62 million to about $50 million. This move further strengthens SpaceX's competitiveness in the commercial launch market. In fact, even at the $62 million price point, SpaceX was already starting to win contracts that would have previously gone to competitors such as Arianespace.
Asia's rising powers are developing indigenous space programmes at a startling pace. Though some hedging behaviour is apparent, most are designed to bolster technological autonomy and augment national prestige. Nevertheless, China and India are both pursuing anti-satellite capabilities. Not yet a full-blown race, both competition and cooperation is possible between Asia's giants.
The Indian space program is a spacefaring success story with demonstrated capability in the design and building of application and scientific satellites, and the means to launch them into desired orbits. The end-to-end mission planning and execution capability comes with a high emphasis on self-reliance. Sounding rockets and small satellite launch vehicles provided the initial experience base for India. This experience was consolidated and applied to realize larger satellite launch vehicles. While many of the launch vehicle technologies were indigenously developed, the foreign acquisition of liquid propulsion technologies did help in catalyzing the development efforts. In this case, launch vehicle concept studies showed the inevitability of using a cryogenic upper stage for geosynchronous Earth orbit missions, which proved to be difficult technically and encountered substantial delays, given the geopolitical situation. However, launch capability matured from development to operational phases, and today, India's Polar Satellite Launch Vehicle and Geosynchronous Satellite Launch Vehicle are in a position to meet both domestic and international market demands.
The United States (US) launch infrastructure is at a crisis point. Human access to space embodied in the Space Shuttle is due to be phased out by 2010. Currently, there are no heavy lift, 100 ton class launchers to support the US national vision for space exploration. Medium and large expendable launch providers, Boeing's Delta IV, and Lockheed-Martin's Atlas V Evolved Expendable Launch Vehicles are so expensive that the Delta no longer carries commercial payloads and the Atlas is unlikely to show significant growth without equally significant cost reductions and commercial traffic growth. This set of circumstances questions US dependence on these launch vehicles for national security purposes. High cost growth also exists with small launch vehicles, such as Pegasus, and the promising new field of small and microsatellites is little developed in the US, while foreign efforts, particularly European, are expanding largely on the availability of low-cost Russian boosters. One bright point is the emerging private sector, which is initially pursuing suborbital or small lift capabilities. Although such vehicles support very limited US Department of Defense or National Aeronautics and Space Administration spaceflight needs, they do offer potential technology demonstration stepping stones to more capable systems needed in the future of both agencies. This article outlines the issues and potential options for the US Government to address these serious shortcomings.
"We are going to do methane." Musk announced as he described his future plans for reusable launch vehicles including those designed to take astronauts to Mars within 15 years, "The energy cost of methane is the lowest and it has a slight Isp (Specific Impulse) advantage over Kerosene," said Musk adding, "And it does not have the pain in the ass factor that hydrogen has".
A de facto monopoly was born with U.S. government blessing and with a series of lucrative U.S. government contracts whose principal goal was reliability and capability, not value for money.
ULA no longer has a monopoly in national security space launches and near-term demand for such launches is expected to soften, so commercial payloads have become more important to the bottom line.
The Arianespace commercial launch consortium is telling its customers it is open to reducing the cost of flights for lighter satellites on the Ariane 5 rocket in response to the challenge posed by SpaceX's Falcon 9 rocket.
Companies that are developing small launch vehicles or who provide rideshare launch services say they expect new Chinese launch vehicles to drive down launch prices
Blue Origin's McFarland said Blue Origin won't let schedule disruptions with one payload impact the co-passenger in dual-launch missions, even if it means splitting the missions in two. 'We are not going to [let this] hold back or delay a launch,' he said. 'We are going for a cadence of up to eight times per year where we will launch. If we don't have a second, we still go as a single. So that's the plan, [with] the same price point for the launch service for the customer'.
The Indian space program is a spacefaring success story with demonstrated capability in the design and building of application and scientific satellites, and the means to launch them into desired orbits. The end-to-end mission planning and execution capability comes with a high emphasis on self-reliance. Sounding rockets and small satellite launch vehicles provided the initial experience base for India. This experience was consolidated and applied to realize larger satellite launch vehicles. While many of the launch vehicle technologies were indigenously developed, the foreign acquisition of liquid propulsion technologies did help in catalyzing the development efforts. In this case, launch vehicle concept studies showed the inevitability of using a cryogenic upper stage for geosynchronous Earth orbit missions, which proved to be difficult technically and encountered substantial delays, given the geopolitical situation. However, launch capability matured from development to operational phases, and today, India's Polar Satellite Launch Vehicle and Geosynchronous Satellite Launch Vehicle are in a position to meet both domestic and international market demands.
the first object in space built entirely by a private company was Telstar 1, a communications satellite launched into orbit by a NASA rocket in 1962. Telstar was followed by hundreds of other private satellites involved in communication and other fields. For decades, US government policy dictated that only NASA was allowed to put these satellites into space, but in 1984, as part of a broader move toward deregulation, Congress passed a law allowing private companies to conduct their own launch their own payloads [and further broadened that legal regime in 1990.]
Faced with competition for the first time, the United Launch Alliance said Monday that it would not bid on the next contract to send Pentagon satellites into space, a stunning announcement for a company that held a monopoly on national security launches for a decade.
the government's monopoly on space travel is over
Faced with competition for the first time, the United Launch Alliance said Monday that it would not bid on the next contract to send Pentagon satellites into space, a stunning announcement for a company that held a monopoly on national security launches for a decade.
It's been 15 years to get to this point ... So far, developing this capability has cost SpaceX about $1 billion.
the first object in space built entirely by a private company was Telstar 1, a communications satellite launched into orbit by a NASA rocket in 1962. Telstar was followed by hundreds of other private satellites involved in communication and other fields. For decades, US government policy dictated that only NASA was allowed to put these satellites into space, but in 1984, as part of a broader move toward deregulation, Congress passed a law allowing private companies to conduct their own launch their own payloads [and further broadened that legal regime in 1990.]
The aerospace giants [Boeing Co. and Lockheed Martin Corp.] shared almost $500 million in equity profits from the rocket-making venture last year, when it still had a monopoly on the business of blasting the Pentagon's most important satellites into orbit. But since then, 'they've had us on a very short leash,' Tory Bruno, United Launch's chief executive, said.
the government's monopoly on space travel is over
The commercial market for launching telecoms spacecraft is tightly contested, but has become dominated by just a few companies—notably, Europe's Arianespace, which flies the Ariane 5, and International Launch Services (ILS), which markets Russia's Proton vehicle. SpaceX is promising to substantially undercut the existing players on price, and SES, the world's second-largest telecoms satellite operator, believes the incumbents had better take note of the California company's capability. 'The entry of SpaceX into the commercial market is a game-changer'
Advertised at $56.5 million per launch, Falcon 9 missions to GTO cost almost $15 million less than a ride atop a Chinese Long March 3B
Costs of launching military satellites has skyrocketed under contracts the Air Force has given to United Launch Alliance. The average cost for each launch using rockets from Boeing and Lockheed has soared to $420 million, according to an analysis by the Government Accountability Office.
...failures have followed in recent years. These problems, combined with the rapid rise of low-cost alternatives such as SpaceX's Falcon 9 rocket, have caused the number of Proton launches in a given year to dwindle from eight or so to just one or two.
The Falcon 9 rocket [carried a] Lockheed Martin-built satellite [for the USAF]. SpaceX first won U.S. Air Force certification for national-security space missions in spring 2015, breaking the lock on sensitive satellite launches long held by United Launch Alliance, a joint venture between Boeing Co. and Lockheed Martin Corp.
The Tauri Group suggests that space startups turned a major corner in 2015, at least in the eyes of venture capital firms that are now piling money into young space companies with unprecedented gusto. ... he study also found that more than 50 venture capital firms invested in space companies in 2015, signaling that venture capital has warmed to a space industry it has long considered both too risky and too slow to yield returns.
"We are going to do methane." Musk announced as he described his future plans for reusable launch vehicles including those designed to take astronauts to Mars within 15 years, "The energy cost of methane is the lowest and it has a slight Isp (Specific Impulse) advantage over Kerosene," said Musk adding, "And it does not have the pain in the ass factor that hydrogen has".
{{cite AV media}}
: CS1 maint: location (link)Less than eight years after its maiden launch, the Falcon 9 booster has become the most dominant rocket in the world. Modern and efficient, no rocket launched more than the 70m Falcon 9 booster launched last year. Barring catastrophe, no rocket seems likely to launch more this year. In part, SpaceX has achieved this level of efficiency by bringing a Silicon Valley mindset to the aerospace industry. The company seeks to disrupt, take chances
Due to the Block 5's reusability, SpaceX has lowered the standard price of a Falcon 9 launch from $62 million to about $50 million. This move further strengthens SpaceX's competitiveness in the commercial launch market. In fact, even at the $62 million price point, SpaceX was already starting to win contracts that would have previously gone to competitors such as Arianespace.
a sense of urgency in Europe about the need to begin flying the Ariane 6 to become more competitive with the likes of SpaceX ... Like ArianeGroup, United Launch Alliance (ULA) has developed a new rocket with the intention to compete with SpaceX.
Initially, SpaceX's competitors looked askance at the concept of vertically landing rockets, but as the company has racked up dozens of successes—and began to fly the same first-stage boosters two and even three times — those attitudes have begun to change. US-based United Launch Alliance has begun exploring how to reuse its rocket engines, China has dozens of new space companies exploring these kinds of reuse technologies, and now Europe also appears to have shifted its stance as well.
But the Falcon 9 is not just changing the way launch-vehicle providers do business; its reach has gone further, prompting satellite makers and commercial fleet operators to retool business plans in response to the low-cost rocket. In March 2012, Boeing announced the start of a new line of all-electric telecommunications spacecraft, the 702SP, which are designed to launch in pairs on a Falcon 9 v1.1. Anchor customers Asia Broadcast Satellite (ABS) of Hong Kong and Mexico's SatMex plan to loft the first two of four such spacecraft on a Falcon 9.... Using electric rather than chemical propulsion will mean the satellites take months, rather than weeks, to reach their final orbital destination. But because all-electric spacecraft are about 40% lighter than their conventional counterparts, the cost to launch them is considerably less than that for a chemically propelled satellite.
But starting from SpaceX onward, it all became very different. What really changed, I think, is the cost of access. Prior to SpaceX, not only were launch vehicles expensive, but none of the prices were really known. So if you were an entrepreneur trying to focus, like Planet Labs or Spire, it was pretty daunting. There was no rule of thumb as to what it would cost you and what kind of schedule reliability you could expect.
The aerospace giants [Boeing Co. and Lockheed Martin Corp.] shared almost $500 million in equity profits from the rocket-making venture last year, when it still had a monopoly on the business of blasting the Pentagon's most important satellites into orbit. But since then, 'they've had us on a very short leash,' Tory Bruno, United Launch's chief executive, said.
{{cite AV media}}
: CS1 maint: location (link)