Strong pseudoprime (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Strong pseudoprime" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
1,379th place
1,175th place
2,242nd place
1,513th place
69th place
59th place
low place
low place

arxiv.org (Global: 69th place; English: 59th place)

  • Jiang, Yupeng; Deng, Yingpu (2012). "Strong pseudoprimes to the first 9 prime bases". arXiv:1207.0063v1 [math.NT].

dartmouth.edu (Global: 2,242nd place; English: 1,513th place)

math.dartmouth.edu

  • Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7.

doi.org (Global: 2nd place; English: 2nd place)

  • Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7.
  • Louis Monier (1980). "Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms". Theoretical Computer Science. 12: 97–108. doi:10.1016/0304-3975(80)90007-9.
  • F. Arnault (August 1995). "Constructing Carmichael Numbers Which Are Strong Pseudoprimes to Several Bases". Journal of Symbolic Computation. 20 (2): 151–161. doi:10.1006/jsco.1995.1042.
  • Zhenxiang Zhang; Min Tang (2003). "Finding Strong Pseudoprimes to Several Bases. II". Mathematics of Computation. 72 (244): 2085–2097. doi:10.1090/S0025-5718-03-01545-X.

miller-rabin.appspot.com (Global: low place; English: low place)

utm.edu (Global: 1,379th place; English: 1,175th place)

primes.utm.edu