Tait conjectures (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Tait conjectures" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
513th place
537th place
18th place
17th place
451st place
277th place
207th place
136th place
26th place
20th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Lickorish, W. B. Raymond (1997), An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, p. 47, doi:10.1007/978-1-4612-0691-0, ISBN 978-0-387-98254-0, MR 1472978, S2CID 122824389.

ams.org

arxiv.org (Global: 69th place; English: 59th place)

doi.org (Global: 2nd place; English: 2nd place)

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

jstor.org (Global: 26th place; English: 20th place)

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Lickorish, W. B. Raymond (1997), An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, p. 47, doi:10.1007/978-1-4612-0691-0, ISBN 978-0-387-98254-0, MR 1472978, S2CID 122824389.
  • Stoimenow, Alexander (2008). "Tait's conjectures and odd amphicheiral knots". Bull. Amer. Math. Soc. 45 (2): 285–291. arXiv:0704.1941. CiteSeerX 10.1.1.312.6024. doi:10.1090/S0273-0979-08-01196-8. S2CID 15299750.
  • Murasugi, Kunio (1987). "Jones polynomials and classical conjectures in knot theory. II". Mathematical Proceedings of the Cambridge Philosophical Society. 102 (2): 317–318. Bibcode:1987MPCPS.102..317M. doi:10.1017/S0305004100067335. S2CID 16269170.
  • Greene, Joshua (2017). "Alternating links and definite surfaces". Duke Mathematical Journal. 166 (11): 2133–2151. arXiv:1511.06329. Bibcode:2015arXiv151106329G. doi:10.1215/00127094-2017-0004. S2CID 59023367.

wolfram.com (Global: 513th place; English: 537th place)

mathworld.wolfram.com