Time hierarchy theorem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Time hierarchy theorem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
5th place
5th place
26th place
20th place
451st place
277th place

ams.org

mathscinet.ams.org

  • Hartmanis, J.; Stearns, R. E. (1 May 1965). "On the computational complexity of algorithms". Transactions of the American Mathematical Society. 117. American Mathematical Society: 285–306. doi:10.2307/1994208. ISSN 0002-9947. JSTOR 1994208. MR 0170805.

doi.org

  • Hartmanis, J.; Stearns, R. E. (1 May 1965). "On the computational complexity of algorithms". Transactions of the American Mathematical Society. 117. American Mathematical Society: 285–306. doi:10.2307/1994208. ISSN 0002-9947. JSTOR 1994208. MR 0170805.
  • Hennie, F. C.; Stearns, R. E. (October 1966). "Two-Tape Simulation of Multitape Turing Machines". J. ACM. 13 (4). New York, NY, USA: ACM: 533–546. doi:10.1145/321356.321362. ISSN 0004-5411. S2CID 2347143.
  • Cook, Stephen A. (1972). "A hierarchy for nondeterministic time complexity". Proceedings of the fourth annual ACM symposium on Theory of computing. STOC '72. Denver, Colorado, United States: ACM. pp. 187–192. doi:10.1145/800152.804913.
  • Seiferas, Joel I.; Fischer, Michael J.; Meyer, Albert R. (January 1978). "Separating Nondeterministic Time Complexity Classes". J. ACM. 25 (1). New York, NY, USA: ACM: 146–167. doi:10.1145/322047.322061. ISSN 0004-5411. S2CID 13561149.
  • Žák, Stanislav (October 1983). "A Turing machine time hierarchy". Theoretical Computer Science. 26 (3). Elsevier Science B.V.: 327–333. doi:10.1016/0304-3975(83)90015-4.
  • Fortnow, L.; Santhanam, R. (2004). "Hierarchy Theorems for Probabilistic Polynomial Time". 45th Annual IEEE Symposium on Foundations of Computer Science. p. 316. doi:10.1109/FOCS.2004.33. ISBN 0-7695-2228-9. S2CID 5555450.
  • Sudborough, Ivan H.; Zalcberg, A. (1976). "On Families of Languages Defined by Time-Bounded Random Access Machines". SIAM Journal on Computing. 5 (2): 217–230. doi:10.1137/0205018.
  • Jones, Neil D. (1993). "Constant factors do matter". 25th Symposium on the Theory of Computing: 602–611. doi:10.1145/167088.167244. S2CID 7527905.
  • Ben-Amram, Amir M. (2003). "Tighter constant-factor time hierarchies". Information Processing Letters. 87 (1): 39–44. doi:10.1016/S0020-0190(03)00253-9.

jstor.org

  • Hartmanis, J.; Stearns, R. E. (1 May 1965). "On the computational complexity of algorithms". Transactions of the American Mathematical Society. 117. American Mathematical Society: 285–306. doi:10.2307/1994208. ISSN 0002-9947. JSTOR 1994208. MR 0170805.

semanticscholar.org

api.semanticscholar.org

worldcat.org

search.worldcat.org

  • Hartmanis, J.; Stearns, R. E. (1 May 1965). "On the computational complexity of algorithms". Transactions of the American Mathematical Society. 117. American Mathematical Society: 285–306. doi:10.2307/1994208. ISSN 0002-9947. JSTOR 1994208. MR 0170805.
  • Hennie, F. C.; Stearns, R. E. (October 1966). "Two-Tape Simulation of Multitape Turing Machines". J. ACM. 13 (4). New York, NY, USA: ACM: 533–546. doi:10.1145/321356.321362. ISSN 0004-5411. S2CID 2347143.
  • Seiferas, Joel I.; Fischer, Michael J.; Meyer, Albert R. (January 1978). "Separating Nondeterministic Time Complexity Classes". J. ACM. 25 (1). New York, NY, USA: ACM: 146–167. doi:10.1145/322047.322061. ISSN 0004-5411. S2CID 13561149.