This effect had been previously discovered by Brewster, but not yet adequately reported. See: "On a new species of moveable polarization", [Quarterly] Journal of Science and the Arts, vol. 2, no. 3, 1817, p. 213; T. Young, "Chromatics", Supplement to the Fourth, Fifth, and Sixth Editions of the Encyclopædia Britannica, vol. 3 (first half, issued February 1818), pp. 141–63, at p. 157; Lloyd, 1834, p. 368.
Cf. Thomas Young in the Quarterly Review, April 1814, reprinted in T. Young (ed. G. Peacock), Miscellaneous Works of the late Thomas Young, London: J. Murray, 1855, vol.1, at p. 263.
R. Ehrlich, 1997, Why Toast Lands Jelly-side Down: Zen and the Art of Physics Demonstrations, Princeton University Press, ISBN978-0-691-02891-0, p. 182, accessed 26 March 2019.
This effect had been previously discovered by Brewster, but not yet adequately reported. See: "On a new species of moveable polarization", [Quarterly] Journal of Science and the Arts, vol. 2, no. 3, 1817, p. 213; T. Young, "Chromatics", Supplement to the Fourth, Fifth, and Sixth Editions of the Encyclopædia Britannica, vol. 3 (first half, issued February 1818), pp. 141–63, at p. 157; Lloyd, 1834, p. 368.
caltech.edu
feynmanlectures.caltech.edu
R.P. Feynman, R.B. Leighton, and M. Sands, 1963–2013, The Feynman Lectures on Physics, California Institute of Technology, Volume II,§ 33-6.
coldatoms.com
Laboratory of Cold Atoms Near Surfaces (Jagiellonian University), "Evanescent wave properties", accessed 11 April 2019; archived 28 April 2018. (N.B.: This page uses z for the coordinate normal to the interface, and the superscripts ⊥ and ∥ for the s ("TE") and p polarizations, respectively. Pages on this site use the time-dependent factor e+iωt — that is, the electrical engineers' time-dependent factor with the physicists' symbol for the imaginary unit.)
dbnl.org
Birefringent media, such as calcite, are non-isotropic (anisotropic). When we say that the extraordinary refraction of a calcite crystal "violates Snell's law", we mean that Snell's law does not apply to the extraordinary ray, because the direction of this ray inside the crystal generally differs from that of the associated wave-normal (Huygens, 1690, tr. Thompson, p.65, Art.24), and because the wave-normal speed is itself dependent on direction. (Note that the cited passage contains a translation error: in the phrase "conjugate with respect to diameters which are not in the straight line AB", the word "not" is unsupported by Huygens' original French and is geometrically incorrect.)
doi.org
Antich, Peter P.; Anderson, Jon A.; Ashman, Richard B.; Dowdey, James E.; Gonzales, Jerome; Murry, Robert C.; Zerwekh, Joseph E.; Pak, Charles Y. C. (2009). "Measurement of mechanical properties of bone material in vitro by ultrasound reflection: Methodology and comparison with ultrasound transmission". Journal of Bone and Mineral Research. 6 (4): 417–426. doi:10.1002/jbmr.5650060414. PMID1858525. S2CID6914223..
"XII. A method of examining refractive and dispersive powers, by prismatic reflection". Philosophical Transactions of the Royal Society of London. 92: 365–380. 1802. doi:10.1098/rstl.1802.0014. S2CID110328209.
Merriam-Webster, Inc., "critical angle", accessed 21 April 2019. (No primary source is given.)
nih.gov
pubmed.ncbi.nlm.nih.gov
Antich, Peter P.; Anderson, Jon A.; Ashman, Richard B.; Dowdey, James E.; Gonzales, Jerome; Murry, Robert C.; Zerwekh, Joseph E.; Pak, Charles Y. C. (2009). "Measurement of mechanical properties of bone material in vitro by ultrasound reflection: Methodology and comparison with ultrasound transmission". Journal of Bone and Mineral Research. 6 (4): 417–426. doi:10.1002/jbmr.5650060414. PMID1858525. S2CID6914223..
E. Bruce, R. Bendure, S. Krein, and N. Lighthizer, "Zoom in on Gonioscopy", Review of Optometry, 21 September 2016.
scholarpedia.org
P.R. Berman, 2012, "Goos-Hänchen effect", Scholarpedia7 (3): 11584, § 2.1, especially eqs. (1) to (3). Note that Berman's n is the reciprocal of the n in the present article.
semanticscholar.org
api.semanticscholar.org
Antich, Peter P.; Anderson, Jon A.; Ashman, Richard B.; Dowdey, James E.; Gonzales, Jerome; Murry, Robert C.; Zerwekh, Joseph E.; Pak, Charles Y. C. (2009). "Measurement of mechanical properties of bone material in vitro by ultrasound reflection: Methodology and comparison with ultrasound transmission". Journal of Bone and Mineral Research. 6 (4): 417–426. doi:10.1002/jbmr.5650060414. PMID1858525. S2CID6914223..
"XII. A method of examining refractive and dispersive powers, by prismatic reflection". Philosophical Transactions of the Royal Society of London. 92: 365–380. 1802. doi:10.1098/rstl.1802.0014. S2CID110328209.
Laboratory of Cold Atoms Near Surfaces (Jagiellonian University), "Evanescent wave properties", accessed 11 April 2019; archived 28 April 2018. (N.B.: This page uses z for the coordinate normal to the interface, and the superscripts ⊥ and ∥ for the s ("TE") and p polarizations, respectively. Pages on this site use the time-dependent factor e+iωt — that is, the electrical engineers' time-dependent factor with the physicists' symbol for the imaginary unit.)
R. Nave, "Prisms for Polarization" (Nicol, Glan–Foucault), Georgia State University, accessed 27 March 2019; archived 25 March 2019.
Noldus Information Technology, "CatWalk™ XT", accessed 29 March 2019; archived 25 March 2019.
Glaucoma Associates of Texas, "Gonioscopy", accessed 29 March 2019; archived 22 August 2018.
zenodo.org
A. Fresnel, "Note sur le calcul des teintes que la polarisation développe dans les lames cristallisées" et seq., Annales de Chimie et de Physique, Ser. 2, vol. 17, pp. 102–11 (May 1821), 167–96 (June 1821), 312–15 ("Postscript", July 1821); reprinted in Fresnel, 1866, pp. 609–48; translated as "On the calculation of the tints that polarization develops in crystalline plates, & postscript", Zenodo: 4058004, 2021.
A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9 December 1822; printed in Fresnel, 1866, pp. 731–51 (full text), pp. 719–29 (extrait, first published in Bulletin de la Société philomathique for 1822, pp. 191–8); full text translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", Zenodo: 4745976, 2021.