Travelling salesman problem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Travelling salesman problem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
5th place
5th place
69th place
59th place
207th place
136th place
4th place
4th place
18th place
17th place
451st place
277th place
3,153rd place
2,332nd place
low place
low place
850th place
625th place
4,878th place
4,120th place
3rd place
3rd place
833rd place
567th place
305th place
264th place
193rd place
152nd place
6,413th place
4,268th place
low place
low place
low place
6,473rd place
9th place
13th place
1,997th place
1,295th place
low place
low place
26th place
20th place
7,479th place
9,681st place
415th place
327th place
179th place
183rd place
6,123rd place
4,716th place
low place
low place
1st place
1st place
6,956th place
low place
low place
low place
4,983rd place
8,002nd place
2,117th place
1,361st place
1,185th place
840th place
low place
low place
1,681st place
2,023rd place
2,053rd place
1,340th place
896th place
674th place

WSJ.com

online.WSJ.com

acm.org

dl.acm.org

ams.org

mathscinet.ams.org

arxiv.org

att.com

about.att.com

books.google.com

cambridge.org

cf.ac.uk

users.cs.cf.ac.uk

cwi.nl

homepages.cwi.nl

  • Cited and English translation in Schrijver (2005). Original German: "Wir bezeichnen als Botenproblem (weil diese Frage in der Praxis von jedem Postboten, übrigens auch von vielen Reisenden zu lösen ist) die Aufgabe, für endlich viele Punkte, deren paarweise Abstände bekannt sind, den kürzesten die Punkte verbindenden Weg zu finden. Dieses Problem ist natürlich stets durch endlich viele Versuche lösbar. Regeln, welche die Anzahl der Versuche unter die Anzahl der Permutationen der gegebenen Punkte herunterdrücken würden, sind nicht bekannt. Die Regel, man solle vom Ausgangspunkt erst zum nächstgelegenen Punkt, dann zu dem diesem nächstgelegenen Punkt gehen usw., liefert im allgemeinen nicht den kürzesten Weg." Schrijver, Alexander (2005). "On the history of combinatorial optimization (till 1960)". In K. Aardal; G.L. Nemhauser; R. Weismantel (eds.). Handbook of Discrete Optimization (PDF). Amsterdam: Elsevier. pp. 1–68.
  • A detailed treatment of the connection between Menger and Whitney as well as the growth in the study of TSP can be found in Schrijver (2005). Schrijver, Alexander (2005). "On the history of combinatorial optimization (till 1960)". In K. Aardal; G.L. Nemhauser; R. Weismantel (eds.). Handbook of Discrete Optimization (PDF). Amsterdam: Elsevier. pp. 1–68.

doi.org

dtic.mil

apps.dtic.mil

harvard.edu

ui.adsabs.harvard.edu

hpi-web.de

eccc.hpi-web.de

jstor.org

lse.ac.uk

eprints.lse.ac.uk

mit.edu

web.mit.edu

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

nsc.ru

nas1.math.nsc.ru

ovgu.de

cse.cs.ovgu.de

phychip.eu

psu.edu

citeseerx.ist.psu.edu

purdue.edu

docs.lib.purdue.edu

quantamagazine.org

scientificamerican.com

blogs.scientificamerican.com

semanticscholar.org

api.semanticscholar.org

siam.org

epubs.siam.org

stanford.edu

graphics.stanford.edu

tu-berlin.de

www3.math.tu-berlin.de

ubc.ca

cs.ubc.ca

uni-heidelberg.de

comopt.ifi.uni-heidelberg.de

  • "TSPLIB". comopt.ifi.uni-heidelberg.de. Retrieved 10 October 2020.

uni-jena.de

zs.thulb.uni-jena.de

uwaterloo.ca

math.uwaterloo.ca

  • See the TSP world tour problem which has already been solved to within 0.05% of the optimal solution. [1]
  • Applegate, David; Bixby, Robert; Chvátal, Vašek; Cook, William; Helsgaun, Keld (June 2004). "Optimal Tour of Sweden". Retrieved 11 November 2020.

web.archive.org

weizmann.ac.il

eccc.weizmann.ac.il

wired.co.uk

wired.com

worldcat.org

search.worldcat.org

youtube.com