Dow & Korf (2007). Dow, P. Alex; Korf, Richard E. (2007), "Best-first search for treewidth", Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, AAAI Press, pp. 1146–1151
Lagergren (1993). Lagergren, Jens (1993), "An upper bound on the size of an obstruction", Graph structure theory (Seattle, WA, 1991), Contemporary Mathematics, vol. 147, Providence, RI: American Mathematical Society, pp. 601–621, doi:10.1090/conm/147/01202, ISBN9780821851609, MR1224734.
Demaine & Hajiaghayi (2004b). Demaine, Erik D.; Hajiaghayi, MohammadTaghi (2004b), "Equivalence of local treewidth and linear local treewidth and its algorithmic applications", Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New York: ACM, pp. 840–849, MR2290974.
Gogate & Dechter (2004). Gogate, Vibhav; Dechter, Rina (2004), "A complete anytime algorithm for treewidth", in Chickering, David Maxwell; Halpern, Joseph Y. (eds.), UAI '04, Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence, Banff, Canada, July 7-11, 2004, AUAI Press, pp. 201–208, arXiv:1207.4109
Kao (2008). Kao, Ming-Yang, ed. (2008), "Treewidth of graphs", Encyclopedia of Algorithms, Springer, p. 969, ISBN9780387307701, Another long-standing open problem is whether there is a polynomial-time algorithm to compute the treewidth of planar graphs.
Lagergren (1993). Lagergren, Jens (1993), "An upper bound on the size of an obstruction", Graph structure theory (Seattle, WA, 1991), Contemporary Mathematics, vol. 147, Providence, RI: American Mathematical Society, pp. 601–621, doi:10.1090/conm/147/01202, ISBN9780821851609, MR1224734.