ULAS J1342+0928 (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "ULAS J1342+0928" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
18th place
17th place
4th place
4th place
102nd place
76th place
low place
low place
782nd place
585th place
936th place
713th place
75th place
83rd place
887th place
714th place
140th place
115th place
low place
low place
114th place
90th place
1st place
1st place
low place
low place
896th place
674th place
234th place
397th place
1,283rd place
1,130th place

arxiv.org

  • Bañados, Eduardo; et al. (6 December 2017). "An 780-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  • Venemans, Bram P.; et al. (6 December 2017). "Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy". The Astrophysical Journal Letters. 851 (1): L8. arXiv:1712.01886. Bibcode:2017ApJ...851L...8V. doi:10.3847/2041-8213/aa943a. hdl:10150/626419. S2CID 54545981.
  • Willott, C. (2011). "Cosmology: A monster in the early Universe". Nature. 474 (7353): 583–584. arXiv:1106.6090. Bibcode:2011Natur.474..583W. doi:10.1038/474583a. PMID 21720357. S2CID 205065580.preprint of this paper

businessinsider.com

caltech.edu

ssc.spitzer.caltech.edu

carnegiescience.edu

users.obs.carnegiescience.edu

djm.cc

doi.org

  • Bañados, Eduardo; et al. (6 December 2017). "An 780-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  • Venemans, Bram P.; et al. (6 December 2017). "Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy". The Astrophysical Journal Letters. 851 (1): L8. arXiv:1712.01886. Bibcode:2017ApJ...851L...8V. doi:10.3847/2041-8213/aa943a. hdl:10150/626419. S2CID 54545981.
  • Willott, C. (2011). "Cosmology: A monster in the early Universe". Nature. 474 (7353): 583–584. arXiv:1106.6090. Bibcode:2011Natur.474..583W. doi:10.1038/474583a. PMID 21720357. S2CID 205065580.preprint of this paper
  • Davide Castelvecchi (25 February 2015). "Young black hole had monstrous growth spurt". Nature. doi:10.1038/nature.2015.16989. S2CID 124969372. Retrieved 9 December 2017. A black hole that grew to gargantuan size in the Universe's first billion years is by far the largest yet spotted from such an early date, researchers have announced. The object, discovered by astronomers in 2013, is 12 billion times as massive as the Sun, and six times greater than its largest-known contemporaries. Its existence poses a challenge for theories of the evolution of black holes, stars and galaxies, astronomers say. Light from the black hole took 12.9 billion years to reach Earth, so astronomers see the object as it was 900 million years after the Big Bang. That "is actually a very short time" for a black hole to have grown so large, says astronomer Xue-Bing Wu of Peking University in Beijing.

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

  • Bañados, Eduardo; et al. (6 December 2017). "An 780-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  • Venemans, Bram P.; et al. (6 December 2017). "Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy". The Astrophysical Journal Letters. 851 (1): L8. arXiv:1712.01886. Bibcode:2017ApJ...851L...8V. doi:10.3847/2041-8213/aa943a. hdl:10150/626419. S2CID 54545981.
  • Willott, C. (2011). "Cosmology: A monster in the early Universe". Nature. 474 (7353): 583–584. arXiv:1106.6090. Bibcode:2011Natur.474..583W. doi:10.1038/474583a. PMID 21720357. S2CID 205065580.preprint of this paper

infoterio.com

nasa.gov

jpl.nasa.gov

  • Landau, Elizabeth; Bañados, Eduardo (6 December 2017). "Found: Most Distant Black Hole". NASA. Retrieved 6 December 2017. "This black hole grew far larger than we expected in only 690 million years after the Big Bang, which challenges our theories about how black holes form," said study co-author Daniel Stern of NASA's Jet Propulsion Laboratory in Pasadena, California.

nature.com

  • Davide Castelvecchi (25 February 2015). "Young black hole had monstrous growth spurt". Nature. doi:10.1038/nature.2015.16989. S2CID 124969372. Retrieved 9 December 2017. A black hole that grew to gargantuan size in the Universe's first billion years is by far the largest yet spotted from such an early date, researchers have announced. The object, discovered by astronomers in 2013, is 12 billion times as massive as the Sun, and six times greater than its largest-known contemporaries. Its existence poses a challenge for theories of the evolution of black holes, stars and galaxies, astronomers say. Light from the black hole took 12.9 billion years to reach Earth, so astronomers see the object as it was 900 million years after the Big Bang. That "is actually a very short time" for a black hole to have grown so large, says astronomer Xue-Bing Wu of Peking University in Beijing.

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Bañados, Eduardo; et al. (6 December 2017). "An 780-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  • Willott, C. (2011). "Cosmology: A monster in the early Universe". Nature. 474 (7353): 583–584. arXiv:1106.6090. Bibcode:2011Natur.474..583W. doi:10.1038/474583a. PMID 21720357. S2CID 205065580.preprint of this paper

phys.org

  • "Discovery in the early universe poses black hole growth puzzle". Phys.org. 11 May 2015. Retrieved 9 December 2017. Now, researchers from the Max Planck Institute for Astronomy (MPIA) have discovered three quasars that challenge conventional wisdom on black hole growth. These quasars are extremely massive, but should not have had sufficient time to collect all that mass. The astronomers observed quasars whose light took nearly 13 billion years to reach Earth. In consequence, the observations show these quasars not as they are today, but as they were almost 13 billion years ago, less than a billion years after the big bang. The quasars in question have about a billion times the mass of the sun. All current theories of black hole growth postulate that, in order to grow that massive, the black holes would have needed to collect infalling matter, and shine brightly as quasars, for at least a hundred million years. But these three quasars proved to have been active for a much shorter time, less than 100,000 years. "This is a surprising result," explains Christina Eilers, a doctoral student at MPIA and lead author of the present study. "We don't understand how these young quasars could have grown the supermassive black holes that power them in such a short time."

scientificamerican.com

semanticscholar.org

api.semanticscholar.org

  • Bañados, Eduardo; et al. (6 December 2017). "An 780-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  • Venemans, Bram P.; et al. (6 December 2017). "Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy". The Astrophysical Journal Letters. 851 (1): L8. arXiv:1712.01886. Bibcode:2017ApJ...851L...8V. doi:10.3847/2041-8213/aa943a. hdl:10150/626419. S2CID 54545981.
  • Willott, C. (2011). "Cosmology: A monster in the early Universe". Nature. 474 (7353): 583–584. arXiv:1106.6090. Bibcode:2011Natur.474..583W. doi:10.1038/474583a. PMID 21720357. S2CID 205065580.preprint of this paper
  • Davide Castelvecchi (25 February 2015). "Young black hole had monstrous growth spurt". Nature. doi:10.1038/nature.2015.16989. S2CID 124969372. Retrieved 9 December 2017. A black hole that grew to gargantuan size in the Universe's first billion years is by far the largest yet spotted from such an early date, researchers have announced. The object, discovered by astronomers in 2013, is 12 billion times as massive as the Sun, and six times greater than its largest-known contemporaries. Its existence poses a challenge for theories of the evolution of black holes, stars and galaxies, astronomers say. Light from the black hole took 12.9 billion years to reach Earth, so astronomers see the object as it was 900 million years after the Big Bang. That "is actually a very short time" for a black hole to have grown so large, says astronomer Xue-Bing Wu of Peking University in Beijing.

space.com

theverge.com

ucla.edu

astro.ucla.edu

web.archive.org