Unrooted binary tree (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Unrooted binary tree" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
26th place
20th place
102nd place
76th place
low place
low place
2,385th place
1,626th place

arxiv.org (Global: 69th place; English: 59th place)

  • See e.g. Eppstein (2009) for the same correspondence between clusterings and trees, but using rooted binary trees instead of unrooted trees and therefore including an arbitrary choice of the root node. Eppstein, David (2009), "Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition", ACM Transactions on Algorithms, 5 (3): 1–24, arXiv:cs.CG/0604034, doi:10.1145/1541885.1541890, S2CID 2434.
  • Cilibrasi & Vitanyi (2006). Cilibrasi, Rudi; Vitanyi, Paul M.B. (2006). "A new quartet tree heuristic for hierarchical clustering". arXiv:cs/0606048..

combinatorics.org (Global: low place; English: low place)

doi.org (Global: 2nd place; English: 2nd place)

  • Furnas (1984). Furnas, George W. (1984), "The generation of random, binary unordered trees", Journal of Classification, 1 (1): 187–233, doi:10.1007/BF01890123, S2CID 121121529.
  • See e.g. Eppstein (2009) for the same correspondence between clusterings and trees, but using rooted binary trees instead of unrooted trees and therefore including an arbitrary choice of the root node. Eppstein, David (2009), "Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition", ACM Transactions on Algorithms, 5 (3): 1–24, arXiv:cs.CG/0604034, doi:10.1145/1541885.1541890, S2CID 2434.
  • Hendy & Penny (1989). Hendy, Michael D.; Penny, David (1989), "A framework for the quantitative study of evolutionary trees", Systematic Biology, 38 (4): 297–309, doi:10.2307/2992396, JSTOR 2992396
  • Robertson & Seymour (1991). Robertson, Neil; Seymour, Paul D. (1991), "Graph minors. X. Obstructions to tree-decomposition", Journal of Combinatorial Theory, 52 (2): 153–190, doi:10.1016/0095-8956(91)90061-N.
  • Catanzaro D, Pesenti R, Wolsey L (2020). "On the Balanced Minimum Evolution Polytope". Discrete Optimization. 36 100570. doi:10.1016/j.disopt.2020.100570. hdl:2078.1/230413. S2CID 213389485.
  • Czumaj & Gibbons (1996). Czumaj, Artur; Gibbons, Alan (1996), "Guthrie's problem: new equivalences and rapid reductions", Theoretical Computer Science, 154 (1): 3–22, doi:10.1016/0304-3975(95)00126-3.
  • Exoo (1996). Exoo, Geoffrey (1996), "A simple method for constructing small cubic graphs of girths 14, 15, and 16" (PDF), Electronic Journal of Combinatorics, 3 (1) R30, doi:10.37236/1254.
  • Przytycka & Larmore (1994). Przytycka, Teresa M.; Larmore, Lawrence L. (1994), "The optimal alphabetic tree problem revisited", Proc. 21st International Colloquium on Automata, Languages and Programming (ICALP '94), Lecture Notes in Computer Science, vol. 820, Springer-Verlag, pp. 251–262, doi:10.1007/3-540-58201-0_73, ISBN 978-3-540-58201-4.

handle.net (Global: 102nd place; English: 76th place)

hdl.handle.net

  • Catanzaro D, Pesenti R, Wolsey L (2020). "On the Balanced Minimum Evolution Polytope". Discrete Optimization. 36 100570. doi:10.1016/j.disopt.2020.100570. hdl:2078.1/230413. S2CID 213389485.

jstor.org (Global: 26th place; English: 20th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Furnas (1984). Furnas, George W. (1984), "The generation of random, binary unordered trees", Journal of Classification, 1 (1): 187–233, doi:10.1007/BF01890123, S2CID 121121529.
  • See e.g. Eppstein (2009) for the same correspondence between clusterings and trees, but using rooted binary trees instead of unrooted trees and therefore including an arbitrary choice of the root node. Eppstein, David (2009), "Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition", ACM Transactions on Algorithms, 5 (3): 1–24, arXiv:cs.CG/0604034, doi:10.1145/1541885.1541890, S2CID 2434.
  • Catanzaro D, Pesenti R, Wolsey L (2020). "On the Balanced Minimum Evolution Polytope". Discrete Optimization. 36 100570. doi:10.1016/j.disopt.2020.100570. hdl:2078.1/230413. S2CID 213389485.

uga.edu (Global: 2,385th place; English: 1,626th place)

cs.uga.edu