Virtually Haken conjecture (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Virtually Haken conjecture" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place
11th place
8th place
69th place
59th place
9,437th place
low place
26th place
20th place
1,047th place
1,015th place
5th place
5th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Waldhausen, Friedhelm (1968). "On irreducible 3-manifolds which are sufficiently large". Annals of Mathematics. 87 (1): 56–88. doi:10.2307/1970594. JSTOR 1970594. MR 0224099.
  • Agol, Ian (2013). "The virtual Haken Conjecture". Doc. Math. 18. With an appendix by Ian Agol, Daniel Groves, and Jason Manning: 1045–1087. doi:10.4171/dm/421. MR 3104553. S2CID 255586740.
  • Haglund, Frédéric; Wise, Daniel (2012). "A combination theorem for special cube complexes". Annals of Mathematics. 176 (3): 1427–1482. doi:10.4007/annals.2012.176.3.2. MR 2979855.
  • Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127–1190. arXiv:0910.5501. doi:10.4007/annals.2012.175.3.4. MR 2912704. S2CID 32593851.
  • Kahn, Jeremy; Markovic, Vladimir (2012). "Counting essential surfaces in a closed hyperbolic three-manifold". Geometry & Topology. 16 (1): 601–624. arXiv:1012.2828. doi:10.2140/gt.2012.16.601. MR 2916295.
  • Bergeron, Nicolas; Wise, Daniel T. (2012). "A boundary criterion for cubulation". American Journal of Mathematics. 134 (3): 843–859. arXiv:0908.3609. doi:10.1353/ajm.2012.0020. MR 2931226. S2CID 14128842.

ams.org

arxiv.org (Global: 69th place; English: 59th place)

docs.google.com (Global: 1,047th place; English: 1,015th place)

doi.org (Global: 2nd place; English: 2nd place)

  • Waldhausen, Friedhelm (1968). "On irreducible 3-manifolds which are sufficiently large". Annals of Mathematics. 87 (1): 56–88. doi:10.2307/1970594. JSTOR 1970594. MR 0224099.
  • Agol, Ian (2013). "The virtual Haken Conjecture". Doc. Math. 18. With an appendix by Ian Agol, Daniel Groves, and Jason Manning: 1045–1087. doi:10.4171/dm/421. MR 3104553. S2CID 255586740.
  • Haglund, Frédéric; Wise, Daniel (2012). "A combination theorem for special cube complexes". Annals of Mathematics. 176 (3): 1427–1482. doi:10.4007/annals.2012.176.3.2. MR 2979855.
  • Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127–1190. arXiv:0910.5501. doi:10.4007/annals.2012.175.3.4. MR 2912704. S2CID 32593851.
  • Kahn, Jeremy; Markovic, Vladimir (2012). "Counting essential surfaces in a closed hyperbolic three-manifold". Geometry & Topology. 16 (1): 601–624. arXiv:1012.2828. doi:10.2140/gt.2012.16.601. MR 2916295.
  • Bergeron, Nicolas; Wise, Daniel T. (2012). "A boundary criterion for cubulation". American Journal of Mathematics. 134 (3): 843–859. arXiv:0908.3609. doi:10.1353/ajm.2012.0020. MR 2931226. S2CID 14128842.
  • Przytycki, Piotr; Wise, Daniel (2017-10-19). "Mixed 3-manifolds are virtually special". Journal of the American Mathematical Society. 31 (2): 319–347. arXiv:1205.6742. doi:10.1090/jams/886. ISSN 0894-0347. S2CID 39611341.

jstor.org (Global: 26th place; English: 20th place)

  • Waldhausen, Friedhelm (1968). "On irreducible 3-manifolds which are sufficiently large". Annals of Mathematics. 87 (1): 56–88. doi:10.2307/1970594. JSTOR 1970594. MR 0224099.

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

uni-bielefeld.de (Global: 9,437th place; English: low place)

pub.uni-bielefeld.de

  • Waldhausen, Friedhelm (1968). "On irreducible 3-manifolds which are sufficiently large". Annals of Mathematics. 87 (1): 56–88. doi:10.2307/1970594. JSTOR 1970594. MR 0224099.

math.uni-bielefeld.de

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org