Volterra series (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Volterra series" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
4th place
4th place
11th place
8th place
149th place
178th place
4,963rd place
7,139th place
833rd place
567th place
2,779th place
1,997th place
102nd place
76th place

doi.org

  • Friston, K.J.; Harrison, L.; Penny, W. (2 April 2003). "Dynamic causal modelling". NeuroImage. 19 (4): 1273–1302. doi:10.1016/S1053-8119(03)00202-7. PMID 12948688. Retrieved 24 April 2024.
  • S. Orcioni; M. Pirani; C. Turchetti (2005). "Advances in Lee–Schetzen method for Volterra filter identification". Multidimensional Systems and Signal Processing. 16 (3): 265–284. doi:10.1007/s11045-004-1677-7. S2CID 57663554.
  • Orcioni, Simone (2014). "Improving the approximation ability of Volterra series identified with a cross-correlation method". Nonlinear Dynamics. 78 (4): 2861–2869. doi:10.1007/s11071-014-1631-7.
  • Korenberg, M. J.; Bruder, S. B.; McIlroy, P. J. (1988). "Exact orthogonal kernel estimation from finite data records: extending Wiener's identification of nonlinear systems". Ann. Biomed. Eng. 16 (2): 201–214. doi:10.1007/BF02364581. PMID 3382067. S2CID 31320729.
  • Franz, Matthias O.; Bernhard Schölkopf (2006). "A unifying view of Wiener and Volterra theory and polynomial kernel regression". Neural Computation. 18 (12): 3097–3118. doi:10.1162/neco.2006.18.12.3097. PMID 17052160. S2CID 9268156.
  • J. L. van Hemmen; W. M. Kistler; E. G. F. Thomas (2000). "Calculation of Volterra Kernels for Solutions of Nonlinear Differential Equations". SIAM Journal on Applied Mathematics. 61 (1): 1–21. doi:10.1137/S0036139999336037. hdl:11370/eda737ae-40d1-4ff3-93d7-6b2434d23d52.

dtic.mil

handle.net

hdl.handle.net

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Friston, K.J.; Harrison, L.; Penny, W. (2 April 2003). "Dynamic causal modelling". NeuroImage. 19 (4): 1273–1302. doi:10.1016/S1053-8119(03)00202-7. PMID 12948688. Retrieved 24 April 2024.
  • Korenberg, M. J.; Bruder, S. B.; McIlroy, P. J. (1988). "Exact orthogonal kernel estimation from finite data records: extending Wiener's identification of nonlinear systems". Ann. Biomed. Eng. 16 (2): 201–214. doi:10.1007/BF02364581. PMID 3382067. S2CID 31320729.
  • Franz, Matthias O.; Bernhard Schölkopf (2006). "A unifying view of Wiener and Volterra theory and polynomial kernel regression". Neural Computation. 18 (12): 3097–3118. doi:10.1162/neco.2006.18.12.3097. PMID 17052160. S2CID 9268156.

rug.nl

research.rug.nl

sciencedirect.com

  • Friston, K.J.; Harrison, L.; Penny, W. (2 April 2003). "Dynamic causal modelling". NeuroImage. 19 (4): 1273–1302. doi:10.1016/S1053-8119(03)00202-7. PMID 12948688. Retrieved 24 April 2024.

semanticscholar.org

api.semanticscholar.org

  • S. Orcioni; M. Pirani; C. Turchetti (2005). "Advances in Lee–Schetzen method for Volterra filter identification". Multidimensional Systems and Signal Processing. 16 (3): 265–284. doi:10.1007/s11045-004-1677-7. S2CID 57663554.
  • Korenberg, M. J.; Bruder, S. B.; McIlroy, P. J. (1988). "Exact orthogonal kernel estimation from finite data records: extending Wiener's identification of nonlinear systems". Ann. Biomed. Eng. 16 (2): 201–214. doi:10.1007/BF02364581. PMID 3382067. S2CID 31320729.
  • Franz, Matthias O.; Bernhard Schölkopf (2006). "A unifying view of Wiener and Volterra theory and polynomial kernel regression". Neural Computation. 18 (12): 3097–3118. doi:10.1162/neco.2006.18.12.3097. PMID 17052160. S2CID 9268156.

unibo.it

amsdottorato.unibo.it