Young–Laplace equation (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Young–Laplace equation" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
4th place
4th place
3rd place
3rd place
1,580th place
1,390th place
11th place
8th place
441st place
311th place
415th place
327th place
1st place
1st place
451st place
277th place
27th place
51st place
2,594th place
2,546th place
5,099th place
3,425th place

ams.org

  • Robert Finn (1999). "Capillary Surface Interfaces" (PDF). AMS.

answers.com

  • "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. Retrieved 2007-09-05.
  • "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. Retrieved 2007-09-05.

books.google.com

  • Thomas Young (1805) "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, 95 : 65–87.
  • Pierre Simon marquis de Laplace, Traité de Mécanique Céleste, volume 4, (Paris, France: Courcier, 1805), Supplément au dixième livre du Traité de Mécanique Céleste, pages 1–79.
  • Pierre Simon marquis de Laplace, Traité de Mécanique Céleste, volume 4, (Paris, France: Courcier, 1805), Supplément au dixième livre du Traité de Mécanique Céleste. On page 2 of the Supplément, Laplace states that capillary action is due to "… les lois dans lesquelles l'attraction n'est sensible qu'à des distances insensibles; …" (… the laws in which attraction is sensible [significant] only at insensible [infinitesimal] distances …).

doi.org

hathitrust.org

babel.hathitrust.org

  • Carl Friedrich Gauss, Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii [General principles of the theory of fluid shapes in a state of equilibrium] (Göttingen, (Germany): Dieterichs, 1830). Available on-line at: Hathi Trust.
  • Franz Neumann with A. Wangerin, ed., Vorlesungen über die Theorie der Capillarität [Lectures on the theory of capillarity] (Leipzig, Germany: B. G. Teubner, 1894).

mit.edu

web.mit.edu

nih.gov

pubmed.ncbi.nlm.nih.gov

semanticscholar.org

api.semanticscholar.org

tcd.ie

maths.tcd.ie

uni-goettingen.de

gdz.sub.uni-goettingen.de

  • In 1751, Johann Andreas Segner came to the same conclusion that Hauksbee had reached in 1709: J. A. von Segner (1751) "De figuris superficierum fluidarum" (On the shapes of liquid surfaces), Commentarii Societatis Regiae Scientiarum Gottingensis (Memoirs of the Royal Scientific Society at Göttingen), 1 : 301–372. On page 303, Segner proposes that liquids are held together by an attractive force (vim attractricem) that acts over such short distances "that no one could yet have perceived it with their senses" (… ut nullo adhuc sensu percipi poterit.).

web.archive.org

wikisource.org

en.wikisource.org