Zolmitriptan (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Zolmitriptan" in English language version.

refsWebsite
Global rank English rank
4th place
4th place
2nd place
2nd place
1st place
1st place
5th place
5th place
low place
9,966th place
274th place
309th place
6,658th place
4,027th place
1,712th place
1,063rd place
low place
low place
447th place
338th place
3rd place
3rd place
1,010th place
612th place
low place
low place
low place
low place
low place
low place
low place
low place
399th place
333rd place
low place
low place
1,937th place
7,777th place
low place
low place
low place
low place
low place
low place
low place
low place

actavis.com (Global: low place; English: low place)

bindingdb.org (Global: low place; English: low place)

books.google.com (Global: 3rd place; English: 3rd place)

canada.ca (Global: 1,712th place; English: 1,063rd place)

corticacare.com (Global: low place; English: low place)

  • "Maplight Autism Study". Cortica. Retrieved 27 October 2024. Purpose: The purpose of this study is to find out whether ML-004, an extended-release version of zolmitriptan, can support with sociability and emotional regulation in adults with ASD.

creativecommons.org (Global: 1,010th place; English: 612th place)

doi.org (Global: 2nd place; English: 2nd place)

  • Yu AM (June 2008). "Indolealkylamines: biotransformations and potential drug-drug interactions". AAPS J. 10 (2) 242: 242–253. doi:10.1208/s12248-008-9028-5. PMC 2751378. PMID 18454322. [...] the N-demethylated metabolites from zolmitriptan and eletriptan are both active at the 5-HT1B/1D sites. In particular, the N-desmethyl-zolmitriptan acts on 5-HT1B/1D receptors with an affinity about two- to six-fold of that of zolmitriptan and its steady state concentration is also higher than the parent drug. Therefore, N-desmethyl-zolmitriptan may have important contribution to the overall zolmitriptan drug effects. This active metabolite undergoes selective MAO-A-mediated deamination metabolism, resulting in an inactive indole acetic acid derivative (21) (Fig. 3). Because zolmitriptan is extensively N-demethylated and N-desmethyl-zolmitriptan is primarily excreted via deamination, potent MAO-A inhibitors are anticipated to alter the pharmacokinetics of N-desmethyl-zolmitriptan in humans. Indeed, concurrent use of selective MAO-A inhibitor, moclobemide, has been shown to cause 1.5- to 3-fold increase in the systemic exposure (AUC) and peak drug concentration (Cmax) of N-desmethyl-zolmitriptan (25).
  • Newman LC, Lipton RB (2001). "Migraine MLT-Down: An Unusual Presentation of Migraine in Patients With Aspartame-Triggered Headaches". Headache: The Journal of Head and Face Pain (abstract). 41 (9): 899–901. doi:10.1046/j.1526-4610.2001.01164.x (inactive 5 August 2025). PMID 11703479.{{cite journal}}: CS1 maint: DOI inactive as of August 2025 (link)
  • Bird S, Derry S, Moore RA (May 2014). "Zolmitriptan for acute migraine attacks in adults". Cochrane Database Syst Rev. 2014 (5) CD008616. doi:10.1002/14651858.CD008616.pub2. PMC 6485805. PMID 24848613.
  • De Vries P, Villalón CM, Saxena PR (1999). "Pharmacology of triptans". Emerging Drugs. 4 (1): 107–125. doi:10.1517/14728214.4.1.107. ISSN 1361-9195.
  • Tfelt-Hansen P, De Vries P, Saxena PR (December 2000). "Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy". Drugs. 60 (6): 1259–1287. doi:10.2165/00003495-200060060-00003. PMID 11152011.
  • Deleu D, Hanssens Y (July 2000). "Current and emerging second-generation triptans in acute migraine therapy: a comparative review". J Clin Pharmacol. 40 (7): 687–700. doi:10.1177/00912700022009431. PMID 10883409.
  • Saxena PR, Tfelt-Hansen P (2001). "Success and failure of triptans". The Journal of Headache and Pain. 2 (1): 3–11. doi:10.1007/s101940170040. ISSN 1129-2369. PMC 3611827.
  • Martin GR, Robertson AD, MacLennan SJ, Prentice DJ, Barrett VJ, Buckingham J, et al. (May 1997). "Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan)". British Journal of Pharmacology. 121 (2): 157–164. doi:10.1038/sj.bjp.0701041. PMC 1564661. PMID 9154322.
  • Pauwels PJ, Tardif S, Palmier C, Wurch T, Colpaert FC (1997). "How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines". Neuropharmacology. 36 (4–5): 499–512. doi:10.1016/s0028-3908(96)00170-0. PMID 9225275.
  • Glen RC, Martin GR, Hill AP, Hyde RM, Woollard PM, Salmon JA, et al. (September 1995). "Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor: discovery of compounds with potential anti-migraine properties". Journal of Medicinal Chemistry. 38 (18): 3566–3580. doi:10.1021/jm00018a016. PMID 7658443.
  • Perez M, Fourrier C, Sigogneau I, Pauwels PJ, Palmier C, John GW, et al. (September 1995). "Synthesis and serotonergic activity of arylpiperazide derivatives of serotonin: potent agonists for 5-HT1D receptors". Journal of Medicinal Chemistry. 38 (18): 3602–3607. doi:10.1021/jm00018a020. PMID 7658447.
  • Perez M, Pauwels PJ, Fourrier C, Chopin P, Valentin JP, John GW, et al. (March 1998). "Dimerization of sumatriptan as an efficient way to design a potent, centrally and orally active 5-HT1B agonist". Bioorganic & Medicinal Chemistry Letters. 8 (6): 675–680. doi:10.1016/s0960-894x(98)00090-0. PMID 9871581.
  • Nelson DL, Phebus LA, Johnson KW, Wainscott DB, Cohen ML, Calligaro DO, et al. (October 2010). "Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan". Cephalalgia. 30 (10): 1159–1169. doi:10.1177/0333102410370873. PMID 20855361.
  • Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, van den Bogaerdt A, Bogers AJ, Zanelli E, et al. (December 2019). "Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan". British Journal of Pharmacology. 176 (24): 4681–4695. doi:10.1111/bph.14832. PMC 6965684. PMID 31418454. TABLE 1 Summary of pIC50 (negative logarithm of the molar concentration of these compounds at which 50% of the radioligand is displaced) and pKi (negative logarithm of the molar concentration of the Ki ) values of individual antimigraine drugs at 5‐HT receptors [...] TABLE 2 Summary of pEC50 values of cAMP (5‐HT1A/B/E/F and 5‐HT7), GTPγS (5‐HT1A/B/D/E/F), and IP (5‐HT2) assays of individual antimigraine drugs at 5‐HT receptors [...]
  • Perez, M., Halazy, S., Pauwels, P.J., Colpaert, F.C., John, G.W. (1999). "F-11356". Drugs of the Future. 24 (6): 0605. doi:10.1358/dof.1999.024.06.537284. Retrieved 23 June 2025.
  • Reuter U, Neeb L (2012). "Lasmiditan hydrochloride". Drugs of the Future. 37 (10): 709. doi:10.1358/dof.2012.037.010.1873629. ISSN 0377-8282. Retrieved 19 June 2025.
  • Mitsikostas DD, Ward TN (2024). "Evidence-based symptomatic treatment of migraine". Migraine Management. Handbook of Clinical Neurology. Vol. 199. pp. 203–218. doi:10.1016/B978-0-12-823357-3.00004-5. ISBN 978-0-12-823357-3. PMID 38307647.
  • Comer MB (April 2002). "Pharmacology of the selective 5-HT(1B/1D) agonist frovatriptan". Headache. 42 (Suppl 2): S47–S53. doi:10.1046/j.1526-4610.42.s2.2.x. PMID 12028320.
  • Seaber EJ, Peck RW, Smith DA, Allanson J, Hefting NR, van Lier JJ, et al. (November 1998). "The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers". British Journal of Clinical Pharmacology (abstract). 46 (5): 433–439. doi:10.1046/j.1365-2125.1998.00809.x. PMC 1873688. PMID 9833595.
  • Martin GR (October 1997). "Pre-clinical pharmacology of zolmitriptan (Zomig; formerly 311C90), a centrally and peripherally acting 5HT1B/1D agonist for migraine". Cephalalgia. 17 (Suppl 18): 4–14. doi:10.1177/0333102497017S1802. PMID 9399012.
  • Lionetto L, Casolla B, Mastropietri F, D'Alonzo L, Negro A, Simmaco M, et al. (August 2012). "Pharmacokinetic evaluation of zolmitriptan for the treatment of migraines". Expert Opin Drug Metab Toxicol. 8 (8): 1043–1050. doi:10.1517/17425255.2012.701618. PMID 22762358.
  • Deen M, Christensen CE, Hougaard A, Hansen HD, Knudsen GM, Ashina M (March 2017). "Serotonergic mechanisms in the migraine brain - a systematic review". Cephalalgia. 37 (3): 251–264. doi:10.1177/0333102416640501. PMID 27013238. The central mechanisms of triptans are a subject of intense debate and have been investigated in several studies. Brain PET studies reported that zolmitriptan crosses the BBB and binds to central 5-HT1B receptors with relatively low occupancy (77,78). It is still unknown whether sumatriptan has a central effect.
  • Wall A, Kågedal M, Bergström M, Jacobsson E, Nilsson D, Antoni G, et al. (2005). "Distribution of zolmitriptan into the CNS in healthy volunteers: a positron emission tomography study". Drugs in R&D. 6 (3): 139–147. doi:10.2165/00126839-200506030-00002. PMID 15869317.
  • Varnäs K, Jučaite A, McCarthy DJ, Stenkrona P, Nord M, Halldin C, et al. (July 2013). "A PET study with [11C]AZ10419369 to determine brain 5-HT1B receptor occupancy of zolmitriptan in healthy male volunteers". Cephalalgia. 33 (10): 853–860. doi:10.1177/0333102413476372. PMID 23430984.
  • Tekes K, Szegi P, Hashemi F, Laufer R, Kalász H, Siddiq A, et al. (2013). "Medicinal chemistry of antimigraine drugs". Curr Med Chem. 20 (26): 3300–3316. doi:10.2174/0929867311320260012. PMID 23746273.
  • Goadsby PJ, Edvinsson L (1994). "Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90". Headache. 34 (7): 394–399. doi:10.1111/j.1526-4610.1994.hed3407394.x. PMID 7928323.
  • Tiger M, Varnäs K, Okubo Y, Lundberg J (May 2018). "The 5-HT1B receptor - a potential target for antidepressant treatment". Psychopharmacology (Berl). 235 (5): 1317–1334. doi:10.1007/s00213-018-4872-1. PMC 5919989. PMID 29546551.
  • Boshuisen ML, den Boer JA (September 2000). "Zolmitriptan (a 5-HT1B/1D receptor agonist with central action) does not increase symptoms in obsessive compulsive disorder". Psychopharmacology (Berl). 152 (1): 74–79. doi:10.1007/s002130000529. PMID 11041318.
  • Wang L, Clark EA, Hanratty L, Koblan KS, Foley A, Dedic N, et al. (August 2024). "TAAR1 and 5-HT1B receptor agonists attenuate autism-like irritability and aggression in rats prenatally exposed to valproic acid". Pharmacol Biochem Behav. 245 173862. doi:10.1016/j.pbb.2024.173862. PMID 39197535. Interest in 5-HT1B as a target for ASD is further evidenced by the ongoing Phase 2 clinical trial of ML-004, a modified release form of the 5-HT1B/1D agonist zolmitriptan, which is being evaluated for the treatment of social communication deficits in adolescent and adult subjects with ASD (NCT05081245).
  • Rasia-Filho AA, Giovenardi M, de Almeida RM (January 2008). "Drugs and aggression". Recent Pat CNS Drug Discov. 3 (1): 40–49. doi:10.2174/157488908783421456. PMID 18221240. In addition, the 5-HT1B receptors are of potential importance as target for treatment of different disorders such as depression, schizophrenia, Parkinson's disease, and impulsive disorders [133]. Drugs acting as agonists at 5- HT1B receptors, when administered systemically, potently and efficaciously inhibit several types of aggressive behavior in mice [17,135; and for review see 63]. Systemically administered 5-HT1B receptor agonists such as CP-94,253, ampirtoline and zolmitriptan exert anti-aggressive effects in mice with moderate or high levels of aggression, without impairing non-aggressive activities [17, 23, 129,135]. Further support for the significant role of this receptor subtype derives from the finding of increased aggression in mutant 129Sv mice lacking the 5-HT1B receptor gene [136, and see 137].
  • de Boer SF, Koolhaas JM (December 2005). "5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis". Eur J Pharmacol. 526 (1–3): 125–139. doi:10.1016/j.ejphar.2005.09.065. PMID 16310183. Using such an ethopharmacological approach in either rats or mice, it has recently been claimed that only certain specific 5-HT1A receptor agonists (i.e., alnespirone and S-15535; de Boer et al., 1999, 2000), a mixed 5-HT1A/1B receptor agonist (i.e., eltoprazine; Olivier et al., 1995) and several specific 5-HT1B receptor agonists (i.e., CGS12066b, CP-94,253, anpirtoline, zolmitriptan, sumatriptan; Bell and Hobson, 1994; Fish et al., 1999; De Almeida et al., 2001; Miczek et al., 2004) exert behavioral specific anti-aggressive effects. In particular, it was claimed that agonists acting on the 5-HT1B receptors have more selective anti-aggressive effects in mice than those acting on 5-HT1A receptors (Miczek et al., 2004; Olivier, 2004).
  • de Almeida RM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (September 2001). "Zolmitriptan--a 5-HT1B/D agonist, alcohol, and aggression in mice". Psychopharmacology (Berl). 157 (2): 131–141. doi:10.1007/s002130100778. PMID 11594437.
  • Tricklebank MD, Robbins TW, Simmons C, Wong EH (June 2021). "Time to re-engage psychiatric drug discovery by strengthening confidence in preclinical psychopharmacology". Psychopharmacology (Berl). 238 (6): 1417–1436. doi:10.1007/s00213-021-05787-x. PMC 7945970. PMID 33694032. A high proportion of violent acts are committed under the influence of alcohol. Aggressive behaviour can also be primed in the mouse by exposure to alcohol (De Almeida et al. 2001). In findings that are consistent with our knowledge of the relationship between serotonin and aggression (Pihl and Lemarquand 1998), this impact of alcohol can be ameliorated by treatment with the 5-HT1B/1D receptor agonist zolmitriptan, an approved anti-migraine drug. However, these findings have seemingly been overlooked despite the consistency of rodent and human data (Gowin et al. 2010).
  • Gowin JL, Swann AC, Moeller FG, Lane SD (July 2010). "Zolmitriptan and human aggression: interaction with alcohol". Psychopharmacology (Berl). 210 (4): 521–531. doi:10.1007/s00213-010-1851-6. PMC 9150756. PMID 20407761.

drugbank.com (Global: low place; English: low place)

go.drugbank.com

drugs.com (Global: 399th place; English: 333rd place)

eur.nl (Global: low place; English: 9,966th place)

repub.eur.nl

fda.gov (Global: 447th place; English: 338th place)

accessdata.fda.gov

garant.ru (Global: 1,937th place; English: 7,777th place)

base.garant.ru

legislation.gov.au (Global: 6,658th place; English: 4,027th place)

  • "Therapeutic Goods (Poisons Standard— June 2025) Instrument 2025" (pdf). Therapeutic Goods Administration (TGA). May 2025. Retrieved 31 August 2025.

modernmedicine.com (Global: low place; English: low place)

drugtopics.modernmedicine.com

nih.gov (Global: 4th place; English: 4th place)

pubmed.ncbi.nlm.nih.gov

  • Yu AM (June 2008). "Indolealkylamines: biotransformations and potential drug-drug interactions". AAPS J. 10 (2) 242: 242–253. doi:10.1208/s12248-008-9028-5. PMC 2751378. PMID 18454322. [...] the N-demethylated metabolites from zolmitriptan and eletriptan are both active at the 5-HT1B/1D sites. In particular, the N-desmethyl-zolmitriptan acts on 5-HT1B/1D receptors with an affinity about two- to six-fold of that of zolmitriptan and its steady state concentration is also higher than the parent drug. Therefore, N-desmethyl-zolmitriptan may have important contribution to the overall zolmitriptan drug effects. This active metabolite undergoes selective MAO-A-mediated deamination metabolism, resulting in an inactive indole acetic acid derivative (21) (Fig. 3). Because zolmitriptan is extensively N-demethylated and N-desmethyl-zolmitriptan is primarily excreted via deamination, potent MAO-A inhibitors are anticipated to alter the pharmacokinetics of N-desmethyl-zolmitriptan in humans. Indeed, concurrent use of selective MAO-A inhibitor, moclobemide, has been shown to cause 1.5- to 3-fold increase in the systemic exposure (AUC) and peak drug concentration (Cmax) of N-desmethyl-zolmitriptan (25).
  • Abram JA, Patel P (2020). "Zolmitriptan". Statpearls. PMID 32491581. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  • Newman LC, Lipton RB (2001). "Migraine MLT-Down: An Unusual Presentation of Migraine in Patients With Aspartame-Triggered Headaches". Headache: The Journal of Head and Face Pain (abstract). 41 (9): 899–901. doi:10.1046/j.1526-4610.2001.01164.x (inactive 5 August 2025). PMID 11703479.{{cite journal}}: CS1 maint: DOI inactive as of August 2025 (link)
  • Bird S, Derry S, Moore RA (May 2014). "Zolmitriptan for acute migraine attacks in adults". Cochrane Database Syst Rev. 2014 (5) CD008616. doi:10.1002/14651858.CD008616.pub2. PMC 6485805. PMID 24848613.
  • Tfelt-Hansen P, De Vries P, Saxena PR (December 2000). "Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy". Drugs. 60 (6): 1259–1287. doi:10.2165/00003495-200060060-00003. PMID 11152011.
  • Deleu D, Hanssens Y (July 2000). "Current and emerging second-generation triptans in acute migraine therapy: a comparative review". J Clin Pharmacol. 40 (7): 687–700. doi:10.1177/00912700022009431. PMID 10883409.
  • Martin GR, Robertson AD, MacLennan SJ, Prentice DJ, Barrett VJ, Buckingham J, et al. (May 1997). "Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan)". British Journal of Pharmacology. 121 (2): 157–164. doi:10.1038/sj.bjp.0701041. PMC 1564661. PMID 9154322.
  • Pauwels PJ, Tardif S, Palmier C, Wurch T, Colpaert FC (1997). "How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines". Neuropharmacology. 36 (4–5): 499–512. doi:10.1016/s0028-3908(96)00170-0. PMID 9225275.
  • Glen RC, Martin GR, Hill AP, Hyde RM, Woollard PM, Salmon JA, et al. (September 1995). "Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor: discovery of compounds with potential anti-migraine properties". Journal of Medicinal Chemistry. 38 (18): 3566–3580. doi:10.1021/jm00018a016. PMID 7658443.
  • Perez M, Fourrier C, Sigogneau I, Pauwels PJ, Palmier C, John GW, et al. (September 1995). "Synthesis and serotonergic activity of arylpiperazide derivatives of serotonin: potent agonists for 5-HT1D receptors". Journal of Medicinal Chemistry. 38 (18): 3602–3607. doi:10.1021/jm00018a020. PMID 7658447.
  • Perez M, Pauwels PJ, Fourrier C, Chopin P, Valentin JP, John GW, et al. (March 1998). "Dimerization of sumatriptan as an efficient way to design a potent, centrally and orally active 5-HT1B agonist". Bioorganic & Medicinal Chemistry Letters. 8 (6): 675–680. doi:10.1016/s0960-894x(98)00090-0. PMID 9871581.
  • Nelson DL, Phebus LA, Johnson KW, Wainscott DB, Cohen ML, Calligaro DO, et al. (October 2010). "Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan". Cephalalgia. 30 (10): 1159–1169. doi:10.1177/0333102410370873. PMID 20855361.
  • Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, van den Bogaerdt A, Bogers AJ, Zanelli E, et al. (December 2019). "Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan". British Journal of Pharmacology. 176 (24): 4681–4695. doi:10.1111/bph.14832. PMC 6965684. PMID 31418454. TABLE 1 Summary of pIC50 (negative logarithm of the molar concentration of these compounds at which 50% of the radioligand is displaced) and pKi (negative logarithm of the molar concentration of the Ki ) values of individual antimigraine drugs at 5‐HT receptors [...] TABLE 2 Summary of pEC50 values of cAMP (5‐HT1A/B/E/F and 5‐HT7), GTPγS (5‐HT1A/B/D/E/F), and IP (5‐HT2) assays of individual antimigraine drugs at 5‐HT receptors [...]
  • Mitsikostas DD, Ward TN (2024). "Evidence-based symptomatic treatment of migraine". Migraine Management. Handbook of Clinical Neurology. Vol. 199. pp. 203–218. doi:10.1016/B978-0-12-823357-3.00004-5. ISBN 978-0-12-823357-3. PMID 38307647.
  • Comer MB (April 2002). "Pharmacology of the selective 5-HT(1B/1D) agonist frovatriptan". Headache. 42 (Suppl 2): S47–S53. doi:10.1046/j.1526-4610.42.s2.2.x. PMID 12028320.
  • Seaber EJ, Peck RW, Smith DA, Allanson J, Hefting NR, van Lier JJ, et al. (November 1998). "The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers". British Journal of Clinical Pharmacology (abstract). 46 (5): 433–439. doi:10.1046/j.1365-2125.1998.00809.x. PMC 1873688. PMID 9833595.
  • Martin GR (October 1997). "Pre-clinical pharmacology of zolmitriptan (Zomig; formerly 311C90), a centrally and peripherally acting 5HT1B/1D agonist for migraine". Cephalalgia. 17 (Suppl 18): 4–14. doi:10.1177/0333102497017S1802. PMID 9399012.
  • Lionetto L, Casolla B, Mastropietri F, D'Alonzo L, Negro A, Simmaco M, et al. (August 2012). "Pharmacokinetic evaluation of zolmitriptan for the treatment of migraines". Expert Opin Drug Metab Toxicol. 8 (8): 1043–1050. doi:10.1517/17425255.2012.701618. PMID 22762358.
  • Deen M, Christensen CE, Hougaard A, Hansen HD, Knudsen GM, Ashina M (March 2017). "Serotonergic mechanisms in the migraine brain - a systematic review". Cephalalgia. 37 (3): 251–264. doi:10.1177/0333102416640501. PMID 27013238. The central mechanisms of triptans are a subject of intense debate and have been investigated in several studies. Brain PET studies reported that zolmitriptan crosses the BBB and binds to central 5-HT1B receptors with relatively low occupancy (77,78). It is still unknown whether sumatriptan has a central effect.
  • Wall A, Kågedal M, Bergström M, Jacobsson E, Nilsson D, Antoni G, et al. (2005). "Distribution of zolmitriptan into the CNS in healthy volunteers: a positron emission tomography study". Drugs in R&D. 6 (3): 139–147. doi:10.2165/00126839-200506030-00002. PMID 15869317.
  • Varnäs K, Jučaite A, McCarthy DJ, Stenkrona P, Nord M, Halldin C, et al. (July 2013). "A PET study with [11C]AZ10419369 to determine brain 5-HT1B receptor occupancy of zolmitriptan in healthy male volunteers". Cephalalgia. 33 (10): 853–860. doi:10.1177/0333102413476372. PMID 23430984.
  • Tekes K, Szegi P, Hashemi F, Laufer R, Kalász H, Siddiq A, et al. (2013). "Medicinal chemistry of antimigraine drugs". Curr Med Chem. 20 (26): 3300–3316. doi:10.2174/0929867311320260012. PMID 23746273.
  • Goadsby PJ, Edvinsson L (1994). "Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90". Headache. 34 (7): 394–399. doi:10.1111/j.1526-4610.1994.hed3407394.x. PMID 7928323.
  • Tiger M, Varnäs K, Okubo Y, Lundberg J (May 2018). "The 5-HT1B receptor - a potential target for antidepressant treatment". Psychopharmacology (Berl). 235 (5): 1317–1334. doi:10.1007/s00213-018-4872-1. PMC 5919989. PMID 29546551.
  • Boshuisen ML, den Boer JA (September 2000). "Zolmitriptan (a 5-HT1B/1D receptor agonist with central action) does not increase symptoms in obsessive compulsive disorder". Psychopharmacology (Berl). 152 (1): 74–79. doi:10.1007/s002130000529. PMID 11041318.
  • Wang L, Clark EA, Hanratty L, Koblan KS, Foley A, Dedic N, et al. (August 2024). "TAAR1 and 5-HT1B receptor agonists attenuate autism-like irritability and aggression in rats prenatally exposed to valproic acid". Pharmacol Biochem Behav. 245 173862. doi:10.1016/j.pbb.2024.173862. PMID 39197535. Interest in 5-HT1B as a target for ASD is further evidenced by the ongoing Phase 2 clinical trial of ML-004, a modified release form of the 5-HT1B/1D agonist zolmitriptan, which is being evaluated for the treatment of social communication deficits in adolescent and adult subjects with ASD (NCT05081245).
  • Rasia-Filho AA, Giovenardi M, de Almeida RM (January 2008). "Drugs and aggression". Recent Pat CNS Drug Discov. 3 (1): 40–49. doi:10.2174/157488908783421456. PMID 18221240. In addition, the 5-HT1B receptors are of potential importance as target for treatment of different disorders such as depression, schizophrenia, Parkinson's disease, and impulsive disorders [133]. Drugs acting as agonists at 5- HT1B receptors, when administered systemically, potently and efficaciously inhibit several types of aggressive behavior in mice [17,135; and for review see 63]. Systemically administered 5-HT1B receptor agonists such as CP-94,253, ampirtoline and zolmitriptan exert anti-aggressive effects in mice with moderate or high levels of aggression, without impairing non-aggressive activities [17, 23, 129,135]. Further support for the significant role of this receptor subtype derives from the finding of increased aggression in mutant 129Sv mice lacking the 5-HT1B receptor gene [136, and see 137].
  • de Boer SF, Koolhaas JM (December 2005). "5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis". Eur J Pharmacol. 526 (1–3): 125–139. doi:10.1016/j.ejphar.2005.09.065. PMID 16310183. Using such an ethopharmacological approach in either rats or mice, it has recently been claimed that only certain specific 5-HT1A receptor agonists (i.e., alnespirone and S-15535; de Boer et al., 1999, 2000), a mixed 5-HT1A/1B receptor agonist (i.e., eltoprazine; Olivier et al., 1995) and several specific 5-HT1B receptor agonists (i.e., CGS12066b, CP-94,253, anpirtoline, zolmitriptan, sumatriptan; Bell and Hobson, 1994; Fish et al., 1999; De Almeida et al., 2001; Miczek et al., 2004) exert behavioral specific anti-aggressive effects. In particular, it was claimed that agonists acting on the 5-HT1B receptors have more selective anti-aggressive effects in mice than those acting on 5-HT1A receptors (Miczek et al., 2004; Olivier, 2004).
  • de Almeida RM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (September 2001). "Zolmitriptan--a 5-HT1B/D agonist, alcohol, and aggression in mice". Psychopharmacology (Berl). 157 (2): 131–141. doi:10.1007/s002130100778. PMID 11594437.
  • Tricklebank MD, Robbins TW, Simmons C, Wong EH (June 2021). "Time to re-engage psychiatric drug discovery by strengthening confidence in preclinical psychopharmacology". Psychopharmacology (Berl). 238 (6): 1417–1436. doi:10.1007/s00213-021-05787-x. PMC 7945970. PMID 33694032. A high proportion of violent acts are committed under the influence of alcohol. Aggressive behaviour can also be primed in the mouse by exposure to alcohol (De Almeida et al. 2001). In findings that are consistent with our knowledge of the relationship between serotonin and aggression (Pihl and Lemarquand 1998), this impact of alcohol can be ameliorated by treatment with the 5-HT1B/1D receptor agonist zolmitriptan, an approved anti-migraine drug. However, these findings have seemingly been overlooked despite the consistency of rodent and human data (Gowin et al. 2010).
  • Gowin JL, Swann AC, Moeller FG, Lane SD (July 2010). "Zolmitriptan and human aggression: interaction with alcohol". Psychopharmacology (Berl). 210 (4): 521–531. doi:10.1007/s00213-010-1851-6. PMC 9150756. PMID 20407761.

ncbi.nlm.nih.gov

pubchem.ncbi.nlm.nih.gov

patsnap.com (Global: low place; English: low place)

synapse.patsnap.com

pharmaceutical-technology.com (Global: low place; English: low place)

portico.org (Global: low place; English: low place)

access.portico.org

prous.com (Global: low place; English: low place)

journals.prous.com

springer.com (Global: 274th place; English: 309th place)

adisinsight.springer.com

thetransmitter.org (Global: low place; English: low place)

web.archive.org (Global: 1st place; English: 1st place)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org