Ronin, Vladimir; Emborg, Mats; Elfgren, Lennart (2014). «Self-Healing Performance and Microstructure Aspects of Concrete Using Energetically Modified Cement with a High Volume of Pozzolans». Nordic Concrete Research51: 131-144 https://www.diva-portal.org/smash/record.jsf?dswid=-9911&pid=diva2%3A987595.
Tole, Ilda; Habermehl-Cwirzen, Karin; Cwirzen, Andrzej (1 de agosto de 2019). «Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders – review». Mineralogy and Petrology (Springer) 113 (4): 449-462. Bibcode:2019MinPe.113..449T. doi:10.1007/s00710-019-00666-y.
Kumar, Rakesh; Kumar, Sanjay; Mehrotra, S.P. (December 2007). «Towards sustainable solutions for fly ash through mechanical activation». Resources, Conservation and Recycling52 (2): 157-179. doi:10.1016/j.resconrec.2007.06.007.
Živanović, Deana; Andrić, Ljubiša; Sekulić, Živko; Milošević, Siniša (1999). «Mechanical Activation of Mica». Advanced Science and Technology of Sintering. pp. 211-217. ISBN978-1-4613-4661-6. doi:10.1007/978-1-4419-8666-5_29.
Krishnaraj, L; Reddy, YBS; Madhusudhan, N; Ravichandran, PT (2017). «Effect of energetically modified Fly Ash on the durability properties of cement mortar». Rasayan Journal of Chemistry10 (2): 423-428. doi:10.7324/RJC.2017.1021682.
Schneider, M.; Romer M., Tschudin M. Bolio C.; Tschudin, M.; Bolio, H. (2011). «Sustainable cement production – present and future». Cement and Concrete Research41 (7): 642-650. doi:10.1016/j.cemconres.2011.03.019.
Chappex, T.; Scrivener K. (2012). «Alkali fixation of C-S-H in blended cement pastes and its relation to alkali silica reaction». Cement and Concrete Research42 (8): 1049-1054. doi:10.1016/j.cemconres.2012.03.010.
Yang, Yingzi; Lepech, Michael D.; Yang, En-Hua; Li, Victor C. (May 2009). «Autogenous healing of engineered cementitious composites under wet–dry cycles». Cement and Concrete Research39 (5): 382-390. doi:10.1016/j.cemconres.2009.01.013.
Li, Victor C.; Herbert, Emily (28 de junio de 2012). «Robust Self-Healing Concrete for Sustainable Infrastructure». Journal of Advanced Concrete Technology10 (6): 207-218. doi:10.3151/jact.10.207. hdl:2027.42/94191.
Justnes, Harald; Elfgren, Lennart; Ronin, Vladimir (February 2005). «Mechanism for performance of energetically modified cement versus corresponding blended cement». Cement and Concrete Research35 (2): 315-323. doi:10.1016/j.cemconres.2004.05.022.
Moropoulou, A.; Cakmak, A.; Labropoulos, K.C.; Van Grieken, R.; Torfs, K. (January 2004). «Accelerated microstructural evolution of a calcium-silicate-hydrate (C-S-H) phase in pozzolanic pastes using fine siliceous sources: Comparison with historic pozzolanic mortars». Cement and Concrete Research34 (1): 1-6. doi:10.1016/S0008-8846(03)00187-X.
Moropoulou, A.; Cakmak, A.S.; Biscontin, G.; Bakolas, A.; Zendri, E. (December 2002). «Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick/lime mortars of Justinian's Hagia Sophia». Construction and Building Materials16 (8): 543-552. doi:10.1016/S0950-0618(02)00005-3.
Thomas, Jeffrey J.; Jennings, Hamlin M. (January 2006). «A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste». Cement and Concrete Research36 (1): 30-38. doi:10.1016/j.cemconres.2004.10.022.
Mertens, G.; Snellings, R.; Van Balen, K.; Bicer-Simsir, B.; Verlooy, P.; Elsen, J. (March 2009). «Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity». Cement and Concrete Research39 (3): 233-240. doi:10.1016/j.cemconres.2008.11.008.
Webmineral.com. «Stratlingite Mineral Data». Consultado el 6 de diciembre de 2013.. Véase también Ding, Jian; Fu, Yan; Beaudoin, J.J. (August 1995). «Strätlingite formation in high alumina cement – silica fume systems: Significance of sodium ions». Cement and Concrete Research25 (6): 1311-1319. doi:10.1016/0008-8846(95)00124-U.
Midgley, H.G.; Bhaskara Rao, P. (March 1978). «Formation of stratlingite, 2CaO.SiO2.Al2O3.8H2O, in relation to the hydration of high alumina cement». Cement and Concrete Research8 (2): 169-172. doi:10.1016/0008-8846(78)90005-4.
Midgley, H.G. (March 1976). «Quantitative determination of phases in high alumina cement clinkers by X-ray diffraction». Cement and Concrete Research6 (2): 217-223. doi:10.1016/0008-8846(76)90119-8.
Abd-El.Aziz, M.A.; Abd.El.Aleem, S.; Heikal, Mohamed (January 2012). «Physico-chemical and mechanical characteristics of pozzolanic cement pastes and mortars hydrated at different curing temperatures». Construction and Building Materials26 (1): 310-316. doi:10.1016/j.conbuildmat.2011.06.026.
Mostafa, Nasser Y.; Zaki, Z.I.; Abd Elkader, Omar H. (November 2012). «Chemical activation of calcium aluminate cement composites cured at elevated temperature». Cement and Concrete Composites34 (10): 1187-1193. doi:10.1016/j.cemconcomp.2012.08.002.
Matusinović, T; Šipušić, J; Vrbos, N (November 2003). «Porosity–strength relation in calcium aluminate cement pastes». Cement and Concrete Research33 (11): 1801-1806. doi:10.1016/S0008-8846(03)00201-1.
Majumdar, A.J.; Singh, B. (November 1992). «Properties of some blended high-alumina cements». Cement and Concrete Research22 (6): 1101-1114. doi:10.1016/0008-8846(92)90040-3.
Boldyrev, V.V.; Pavlov, S.V.; Goldberg, E.L. (March 1996). «Interrelation between fine grinding and mechanical activation». International Journal of Mineral Processing. 44-45: 181-185. doi:10.1016/0301-7516(95)00028-3.
Heinicke, G.; Hennig, H.-P.; Linke, E.; Steinike, U.; Thiessen, K.-P.; Meyer, K. (1984). «Tribochemistry: In Co-Operation with H.P. Hennig, et al.» [and with a preface by Peter-Adolf Thiessen]. Acta Polymerica (Berlin : Akademie-Verlag) 36 (7): 400-401. doi:10.1002/actp.1985.010360721.
Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, Krystyna (2013). «Hallmarks of mechanochemistry: from nanoparticles to technology». Chemical Society Reviews42 (18): 7571-8137. PMID23558752. S2CID205853500. doi:10.1039/c3cs35468g. hdl:10261/96958.
Hüttig, Gustav F. (1943). «Zwischenzustände bei Reaktionen im festen Zustand und ihre Bedeutung für die Katalyse». Heterogene Katalyse III. pp. 318-577. ISBN978-3-642-52028-0. doi:10.1007/978-3-642-52046-4_9.
Pourghahramani, P; Forssberg, E (March 2007). «Effects of mechanical activation on the reduction behavior of hematite concentrate». International Journal of Mineral Processing82 (2): 96-105. doi:10.1016/J.MINPRO.2006.11.003.
Pourghahramani, P; Forssberg, E (March 2007). «Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods». Thermochimica Acta454 (2): 69-77. doi:10.1016/j.tca.2006.12.023.
Pourghahramani, P; Forssberg, E (May 2006). «Comparative study of microstructural characteristics and stored energy of mechanically activated hematite in different grinding environments». International Journal of Mineral Processing79 (2): 120-139. doi:10.1016/j.minpro.2006.01.010.
Pourghahramani, P; Forssberg, E (May 2006). «Microstructure characterization of mechanically activated hematite using XRD line broadening». International Journal of Mineral Processing79 (2): 106-119. doi:10.1016/j.minpro.2006.02.001.
Pourghahramani, P; Forssberg, E (September 2007). «Changes in the structure of hematite by extended dry grinding in relation to imposed stress energy». Powder Technology178 (1): 30-39. doi:10.1016/j.powtec.2007.04.003.
Tromans, D.; Meech, J.A. (November 2001). «Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation». Minerals Engineering14 (11): 1359-1377. doi:10.1016/S0892-6875(01)00151-0.
Nepapushev, A. A.; Kirakosyan, K. G.; Moskovskikh, D. O.; Kharatyan, S. L.; Rogachev, A. S.; Mukasyan, A. S. (2015). «Influence of high-energy ball milling on reaction kinetics in the Ni-Al system: An electrothermorgaphic study». International Journal of Self-Propagating High-Temperature Synthesis24 (1): 21-28. S2CID136668210. doi:10.3103/S1061386215010082.
Sobolev, Konstantin (August 2005). «Mechano-chemical modification of cement with high volumes of blast furnace slag». Cement and Concrete Composites27 (7–8): 848-853. doi:10.1016/j.cemconcomp.2005.03.010.
Fuller, K. N. G.; Fox, P. G.; Field, J. E. (1975). «The Temperature Rise at the Tip of Fast-Moving Cracks in Glassy Polymers». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences341 (1627): 537-557. Bibcode:1975RSPSA.341..537F. JSTOR78609. S2CID137104796. doi:10.1098/rspa.1975.0007.
Krycer, Ian; Hersey, John A. (November 1980). «A comparative study of comminution in rotary and vibratory ball mills». Powder Technology27 (2): 137-141. doi:10.1016/0032-5910(80)85015-7.
Venkataraman, K.S.; Narayanan, K.S. (May 1998). «Energetics of collision between grinding media in ball mills and mechanochemical effects». Powder Technology96 (3): 190-201. doi:10.1016/S0032-5910(97)03368-8.
Li, Victor C.; Herbert, Emily (28 de junio de 2012). «Robust Self-Healing Concrete for Sustainable Infrastructure». Journal of Advanced Concrete Technology10 (6): 207-218. doi:10.3151/jact.10.207. hdl:2027.42/94191.
Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, Krystyna (2013). «Hallmarks of mechanochemistry: from nanoparticles to technology». Chemical Society Reviews42 (18): 7571-8137. PMID23558752. S2CID205853500. doi:10.1039/c3cs35468g. hdl:10261/96958.
harvard.edu
adsabs.harvard.edu
Tole, Ilda; Habermehl-Cwirzen, Karin; Cwirzen, Andrzej (1 de agosto de 2019). «Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders – review». Mineralogy and Petrology (Springer) 113 (4): 449-462. Bibcode:2019MinPe.113..449T. doi:10.1007/s00710-019-00666-y.
Fuller, K. N. G.; Fox, P. G.; Field, J. E. (1975). «The Temperature Rise at the Tip of Fast-Moving Cracks in Glassy Polymers». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences341 (1627): 537-557. Bibcode:1975RSPSA.341..537F. JSTOR78609. S2CID137104796. doi:10.1098/rspa.1975.0007.
Fuller, K. N. G.; Fox, P. G.; Field, J. E. (1975). «The Temperature Rise at the Tip of Fast-Moving Cracks in Glassy Polymers». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences341 (1627): 537-557. Bibcode:1975RSPSA.341..537F. JSTOR78609. S2CID137104796. doi:10.1098/rspa.1975.0007.
ltu.se
«Stipendieutdelning»(en sueco). Luleå tekniska universitet. 30 de agosto de 2006. Consultado el 24 de marzo de 2014.
Nepapushev, A. A.; Kirakosyan, K. G.; Moskovskikh, D. O.; Kharatyan, S. L.; Rogachev, A. S.; Mukasyan, A. S. (2015). «Influence of high-energy ball milling on reaction kinetics in the Ni-Al system: An electrothermorgaphic study». International Journal of Self-Propagating High-Temperature Synthesis24 (1): 21-28. S2CID136668210. doi:10.3103/S1061386215010082.
Fuller, K. N. G.; Fox, P. G.; Field, J. E. (1975). «The Temperature Rise at the Tip of Fast-Moving Cracks in Glassy Polymers». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences341 (1627): 537-557. Bibcode:1975RSPSA.341..537F. JSTOR78609. S2CID137104796. doi:10.1098/rspa.1975.0007.
«Cement Data Sheet». U.S. Geological Survey. USGS. 2020. Consultado el 10 de agosto de 2020.
utexas.edu
Notas adicionales sobre química puzolánica: (A) La relación Ca/Si (o C/S) y el número de moléculas de agua pueden variar, al igual que la estequiometría C-S-H. (B) A menudo, los cristales hidratados se forman, por ejemplo, cuando el aluminato tricálcico reacciona con el sulfato de calcio disuelto para formar hidratos cristalinos (3CaO·(Al,Fe)2O3·CaSO4·nH2O, fórmula general simplificada). Esto se denomina fase AFm ("alúmina, óxido férrico, monosulfato"). (C) La fase AFmper se no es excluyente. Por un lado, mientras que los sulfatos, junto con otros aniones como carbonatos o cloruros pueden sumarse a la fase AFm, también pueden causar una fase AFt donde se forma ettringita (6CaO·Al2O3·3SO3·32H2O o C6S3H32). (D) Generalmente, la fase AFm es importante en el proceso de hidratación posterior, mientras que la fase AFt puede ser la causa del fallo del hormigón conocida como DEF, que puede ser un problema particular en hormigones no puzolánicos (véase, por ejemplo, Folliard, K., et al., Preventing ASR/ DEF en hormigón nuevo: Informe final, TXDOT y FHWA de EE. UU.: Doc. FHWA/TX-06/0-4085-5, Rev. 06/2006). (E) Se cree que las vías químicas puzolánicas que utilizan iones Ca2+ hacen que la ruta AFt sea relativamente suprimida.
Webmineral.com. «Stratlingite Mineral Data». Consultado el 6 de diciembre de 2013.. Véase también Ding, Jian; Fu, Yan; Beaudoin, J.J. (August 1995). «Strätlingite formation in high alumina cement – silica fume systems: Significance of sodium ions». Cement and Concrete Research25 (6): 1311-1319. doi:10.1016/0008-8846(95)00124-U.