Buchholz, R. H.; MacDougall, J. A. (1999), «Heron quadrilaterals with sides in arithmetic or geometric progression», Bulletin of the Australian Mathematical Society59 (2): 263-9, MR1680787, doi:10.1017/S0004972700032883.
Usiskin, Zalman; Griffin, Jennifer; Witonsky, David; Willmore, Edwin (2008), «10. Cyclic quadrilaterals», The Classification of Quadrilaterals: A Study of Definition, Research in mathematics education, IAP, pp. 63-65, ISBN978-1-59311-695-8.
Honsberger, Ross (1995), «4.2 Cyclic quadrilaterals», Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library 37, Cambridge University Press, pp. 35-39, ISBN978-0-88385-639-0.
Fraivert, David (July 2019). «New points that belong to the nine-point circle». The Mathematical Gazette103 (557): 222-232. doi:10.1017/mag.2019.53.
Peter, Thomas (September 2003), «Maximizing the area of a quadrilateral», The College Mathematics Journal34 (4): 315-6, JSTOR3595770, doi:10.2307/3595770.
Hoehn, Larry (March 2000), «Circumradius of a cyclic quadrilateral», Mathematical Gazette84 (499): 69-70, JSTOR3621477, doi:10.2307/3621477.
Buchholz, R. H.; MacDougall, J. A. (1999), «Heron quadrilaterals with sides in arithmetic or geometric progression», Bulletin of the Australian Mathematical Society59 (2): 263-9, MR1680787, doi:10.1017/S0004972700032883.
Kiper, Gökhan; Söylemez, Eres (1 de mayo de 2012). «Homothetic Jitterbug-like linkages». Mechanism and Machine Theory51: 145-158. doi:10.1016/j.mechmachtheory.2011.11.014.
Peter, Thomas (September 2003), «Maximizing the area of a quadrilateral», The College Mathematics Journal34 (4): 315-6, JSTOR3595770, doi:10.2307/3595770.
Hoehn, Larry (March 2000), «Circumradius of a cyclic quadrilateral», Mathematical Gazette84 (499): 69-70, JSTOR3621477, doi:10.2307/3621477.
Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates, Highperception, p. 179, ISBN978-1906338008, OCLC213434422.
Siddons, A. W.; Hughes, R. T. (1929), Trigonometry, Cambridge University Press, p. 202, OCLC429528983.
Altshiller-Court, Nathan (2007) [1952], College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd edición), Courier Dover, pp. 131, 137-8, ISBN978-0-486-45805-2, OCLC78063045.