Función φ de Euler (Spanish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Función φ de Euler" in Spanish language version.

refsWebsite
Global rank Spanish rank
2nd place
2nd place
low place
low place
57th place
3rd place
70th place
166th place
3,659th place
2,445th place
3,479th place
5,524th place
124th place
265th place
2,242nd place
2,917th place
3rd place
7th place
low place
low place
2,656th place
low place
1,983rd place
3,267th place
3,707th place
5,780th place
6th place
5th place
69th place
148th place

archive.org

arxiv.org

bnf.fr

gallica.bnf.fr

  • L. Euler "Theoremata arithmetica nova methodo demonstrata" (An arithmetic theorem proved by a new method), Novi commentarii academiae scientiarum imperialis Petropolitanae (New Memoirs of the Saint-Petersburg Imperial Academy of Sciences), 8 (1763), 74–104. (La obra fue presentada en la Academia de San Petersburgo el 15 de octubre de 1759. Una obra con el mismo título fue presentada en la Academia de Berlín el 8 de junio de 1758). Disponible en línea en: Ferdinand Rudio, ed., Leonhardi Euleri Commentationes Arithmeticae, volume 1, in: Leonhardi Euleri Opera Omnia, series 1, volume 2 (Leipzig, Germany, B. G. Teubner, 1915), pages 531–555. On page 531, Euler defines n as the number of integers that are smaller than N and relatively prime to N (... aequalis sit multitudini numerorum ipso N minorum, qui simul ad eum sint primi, ...), que es la función fi, φ(N).

books.google.com

  • J. J. Sylvester (1879) "On certain ternary cubic-form equations", American Journal of Mathematics, 2 : 357-393; Sylvester coins the term "totient" on page 361.

dartmouth.edu

math.dartmouth.edu

doi.org

dx.doi.org

icm.edu.pl

matwbn.icm.edu.pl

integers-ejcnt.org

issn.org

portal.issn.org

khanacademy.org

loc.gov

lccn.loc.gov

maa.org

eulerarchive.maa.org

  • L. Euler "Theoremata arithmetica nova methodo demonstrata" (An arithmetic theorem proved by a new method), Novi commentarii academiae scientiarum imperialis Petropolitanae (New Memoirs of the Saint-Petersburg Imperial Academy of Sciences), 8 (1763), 74–104. (La obra fue presentada en la Academia de San Petersburgo el 15 de octubre de 1759. Una obra con el mismo título fue presentada en la Academia de Berlín el 8 de junio de 1758). Disponible en línea en: Ferdinand Rudio, ed., Leonhardi Euleri Commentationes Arithmeticae, volume 1, in: Leonhardi Euleri Opera Omnia, series 1, volume 2 (Leipzig, Germany, B. G. Teubner, 1915), pages 531–555. On page 531, Euler defines n as the number of integers that are smaller than N and relatively prime to N (... aequalis sit multitudini numerorum ipso N minorum, qui simul ad eum sint primi, ...), que es la función fi, φ(N).

projecteuclid.org

stackexchange.com

math.stackexchange.com

zentralblatt-math.org