Los términos originales en francés eran holomorphe y méromorphe.Briot, Charles Auguste; Bouquet, Jean-Claude (1875). «§15 fonctions holomorphes». Théorie des fonctions elliptiques (2nd edición). Gauthier-Villars. pp. 14-15. «Cuando una función es continua, monótropa y tiene una derivada, cuando la variable se mueve en una cierta parte del plano, diremos que es holomorfa en esta parte del plano. Indicamos con esta denominación que es semejante a las funciones enteras que gozan de estas propiedades en toda la extensión del plano. [¶ Una fracción racional tiene como polos las raíces del denominador; es una función holomorfa en cualquier parte del plano que no contenga ninguno de sus polos. ¶ Cuando una función es holomorfa en una parte del plano, excepto en ciertos polos, decimos que es meromorfa en esa parte del plano, es decir, semejante a las fracciones racionales. [Cuando una función es continua, monotrópica, y tiene una derivada, cuando la variable se mueve en cierta parte del plano, decimos que es holomorfa en esa parte del plano. Queremos decir con este nombre que se parece a función enteras que gozan de estas propiedades en toda la extensión del plano. [...] ¶ Una fracción racional admite como polos los raíces del denominador; es una función holomorfa en toda aquella parte del plano que no contiene ningún polo. ¶ Cuando una función es holomorfa en parte del plano, excepto en ciertos polos, decimos que es meromorfa en esa parte del plano, es decir se parece a las fracciones racionales.]» Harkness, James; Morley, Frank (1893). «5. Integration». A Treatise on the Theory of Functions. Macmillan. p. 161.
books.google.com
Peter Ebenfelt, Norbert Hungerbühler, Joseph J. Kohn, Ngaiming Mok, Emil J. Straube
(2011) Complex Analysis Springer Science & Business Media
Gray, J. D.; Morris, S. A. (1978), «When is a Function that Satisfies the Cauchy-Riemann Equations Analytic?», The American Mathematical Monthly (April 1978) 85 (4): 246-256, JSTOR2321164..