HMAC (Spanish Wikipedia)

Analysis of information sources in references of the Wikipedia article "HMAC" in Spanish language version.

refsWebsite
Global rank Spanish rank
214th place
673rd place
1st place
1st place
5,032nd place
7,832nd place
207th place
808th place
2,232nd place
2,059th place
4,194th place
5,571st place
low place
low place
8,888th place
low place
1,933rd place
1,730th place
low place
low place

ccc.de

events.ccc.de

iacr.org

eprint.iacr.org

iacr.org

ietf.org

datatracker.ietf.org

  • RFC 2104, section 2, "Definition of HMAC", page 3.

ietf.org

  • IETF (February 1997). «RFC 2104». Consultado el 3 de diciembre de 2009. «The strongest attack known against HMAC is based on the frequency of collisions for the hash function H ("birthday attack") [PV,BCK2], and is totally impractical for minimally reasonable hash functions.». 

tools.ietf.org

noekeon.org

keccak.noekeon.org

  • Keccak team. «Strengths of Keccak - Design and security». Consultado el 30 de enero de 2013. «Unlike SHA-1 and SHA-2, Keccak does not have the length-extension weakness, hence does not need the HMAC nested construction. Instead, MAC computation can be performed by simply prepending the message with the key.». 

php.net

psu.edu

citeseerx.ist.psu.edu

python.org

docs.python.org

schneier.com

  • Bruce Schneier (August 2005). «SHA-1 Broken». Consultado el 9 de enero de 2009. «although it doesn't affect applications such as HMAC where collisions aren't important». 

ucsd.edu

cseweb.ucsd.edu

  • Bellare, Mihir (June 2006). «New Proofs for NMAC and HMAC: Security without Collision-Resistance». En Dwork, Cynthia, ed. Advances in Cryptology – Crypto 2006 Proceedings. Lecture Notes in Computer Science 4117. Springer-Verlag. Archivado desde el original|urlarchivo= requiere |url= (ayuda) el 16 de julio de 2011. Consultado el 25 de mayo de 2010. «This paper proves that HMAC is a PRF under the sole assumption that the compression function is a PRF. This recovers a proof based guarantee since no known attacks compromise the pseudorandomness of the compression function, and it also helps explain the resistance-to-attack that HMAC has shown even when implemented with hash functions whose (weak) collision resistance is compromised.». 

web.archive.org