Tao, Y. (2005). «Characterization of density profile of laser-produced Sn plasma for 13,5 nm extreme ultraviolet source». Appl. Phys. Lett.86 (20): 201501. doi:10.1063/1.1931825.
Paetzel, R. (2003). «Láseres excímeros para litografía de alta resolución NA 193 nm». Proc. SPIE. Optical Microlithography XVI 5040: 1665. doi:10.1117/12.485344.
Harilal, S. S. (2006). «Control espectral de las emisiones de los objetivos dopados con estaño para la litografía ultravioleta extrema». J. Phys. D39 (3): 484-487. doi:10.1088/0022-3727/39/3/010.
Thedjoisworo, Bayu; Cheung, David; Crist, Vince (2013). «Comparación de los efectos de los plasmas basados en H2 y O2 en la eliminación de la fotoprotección, el silicio y el nitruro de silicio». Diario de Ciencia y Tecnología de Vacío B, Nanotecnología y Microelectrónica: Materiales, Procesamiento, Medición y Fenómenos31 (2): 021206. ISSN2166-2746. doi:10.1116/1.4792254.
Akira Endo, Hideo Hoshino, Takashi Suganuma, Masato Moriya, Tatsuya Ariga, Yoshifumi Ueno, Masaki Nakano, Takeshi Asayama, Tamotsu Abe, Hiroshi Komori, Georg Soumagne, Hakaru Mizoguchi, Akira Sumitani and Koichi Toyoda. «Laser Produced EUV Light Source Development for HVM». EUVA (Extreme Ultraviolet Lithography System Development Association). Archivado desde el original el 9 de julio de 2020.
Thedjoisworo, Bayu; Cheung, David; Crist, Vince (2013). «Comparación de los efectos de los plasmas basados en H2 y O2 en la eliminación de la fotoprotección, el silicio y el nitruro de silicio». Diario de Ciencia y Tecnología de Vacío B, Nanotecnología y Microelectrónica: Materiales, Procesamiento, Medición y Fenómenos31 (2): 021206. ISSN2166-2746. doi:10.1116/1.4792254.
Dr. Hakaru Mizoguchi, Hiroaki Nakarai, Tamotsu Abe, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki and Takashi Saitou. «High power lpp-euv source with long collector mirror lifetime for high volume semiconductor manufacturing». Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa,254-8567, JAPAN.
Frits van Hout (24 de noviembre de 2014). «EUV». ASML. Consultado el 14 de diciembre de 2016.
ASML. «ASML reports 2013 results». US Securities and Exchange Commission. Consultado el 16 de julio de 2014. «We remain on target to deliver EUV systems with a throughput of 70 wafers per hour in 2014, upgradeable to 125 wafers per hour in 2015.»
Singer, Pete (28 de enero de 2020). «ISS: Perspectivas 2020 para UVE». Semiconductor Digest(en inglés estadounidense). Archivado desde el original el 28 de noviembre de 2020. Consultado el 16 de mayo de 2020.
«5nm Fab Challenges». 20 de enero de 2016. «ASML is developing an anamorphic lens for EUV. The two-axis EUV lens would support 8x magnification in the scan mode and 4x in the other direction. It would support 0.5 to 0.6 NAs. … The EUV scanner could take a throughput hit. It would expose the wafer at only half the field size, as opposed to full field sizes with today’s EUV scanners.»
Singer, Pete (28 de enero de 2020). «ISS: Perspectivas 2020 para UVE». Semiconductor Digest(en inglés estadounidense). Archivado desde el original el 28 de noviembre de 2020. Consultado el 16 de mayo de 2020.
Akira Endo, Hideo Hoshino, Takashi Suganuma, Masato Moriya, Tatsuya Ariga, Yoshifumi Ueno, Masaki Nakano, Takeshi Asayama, Tamotsu Abe, Hiroshi Komori, Georg Soumagne, Hakaru Mizoguchi, Akira Sumitani and Koichi Toyoda. «Laser Produced EUV Light Source Development for HVM». EUVA (Extreme Ultraviolet Lithography System Development Association). Archivado desde el original el 9 de julio de 2020.