Jaeger, Gregg (2021-11). «The Elementary Particles of Quantum Fields». Entropy(en inglés)23 (11): 1416. ISSN1099-4300. doi:10.3390/e23111416. Consultado el 25 de diciembre de 2022. «Steven Weinberg made the following claims.
“The Standard Model is a quantum field theory. The fundamental ingredients of nature that appear in the underlying equations are fields: the familiar electromagnetic field, and some twenty or so other fields. The so-called elementary particles, like photons and quarks and electrons, are ‘quanta’ of the fields—bundles of the fields’ energy and momentum. The properties of these fields and their interactions are largely dictated by principles of symmetry, including Einstein’s Special Principle of Relativity, together with a principle of ‘renormalizability,’ which dictates that the fields can interact with each other only in certain specially simple ways. The Standard Model has passed every test that can be imposed with existing experimental facilities” ([7], pp. 59–60); “By the mid-1970s it had become clear that the properties of these particles and all other known particles could be understood as mathematical consequences of …the Standard Model. The fundamental equations of the Standard Model deal not with particles and fields, but with fields of force alone; particles are just bundles of field energy” ([7], p. 109); “a(p) and a†(p) respectively annihilate and create a particle of momentum p [in free-field theories]. This is what we mean when [we] refer to elementary particles being bundles of the energy and momentum in some field”.»
Jaeger, Gregg (2021-11). «The Elementary Particles of Quantum Fields». Entropy(en inglés)23 (11): 1416. ISSN1099-4300. doi:10.3390/e23111416. Consultado el 25 de diciembre de 2022. «Steven Weinberg made the following claims.
“The Standard Model is a quantum field theory. The fundamental ingredients of nature that appear in the underlying equations are fields: the familiar electromagnetic field, and some twenty or so other fields. The so-called elementary particles, like photons and quarks and electrons, are ‘quanta’ of the fields—bundles of the fields’ energy and momentum. The properties of these fields and their interactions are largely dictated by principles of symmetry, including Einstein’s Special Principle of Relativity, together with a principle of ‘renormalizability,’ which dictates that the fields can interact with each other only in certain specially simple ways. The Standard Model has passed every test that can be imposed with existing experimental facilities” ([7], pp. 59–60); “By the mid-1970s it had become clear that the properties of these particles and all other known particles could be understood as mathematical consequences of …the Standard Model. The fundamental equations of the Standard Model deal not with particles and fields, but with fields of force alone; particles are just bundles of field energy” ([7], p. 109); “a(p) and a†(p) respectively annihilate and create a particle of momentum p [in free-field theories]. This is what we mean when [we] refer to elementary particles being bundles of the energy and momentum in some field”.»
K.A. Olive et al. (Particle Data Group) (2015). «The Review of Particle Physics»(PDF). http://pdg.lbl.gov/(en inglés). Consultado el 25 de septiembre de 2016. «The weak interactions, on the other hand, violate C and P in the strongest possible way. For example, the charged W bosons couple to left-handed electrons, and to their CP-conjugate right-handed positrons, but to neither their C-conjugate left-handed positrons, nor their P-conjugate right-handed electrons.»
Jaeger, Gregg (2021-11). «The Elementary Particles of Quantum Fields». Entropy(en inglés)23 (11): 1416. ISSN1099-4300. doi:10.3390/e23111416. Consultado el 25 de diciembre de 2022. «Steven Weinberg made the following claims.
“The Standard Model is a quantum field theory. The fundamental ingredients of nature that appear in the underlying equations are fields: the familiar electromagnetic field, and some twenty or so other fields. The so-called elementary particles, like photons and quarks and electrons, are ‘quanta’ of the fields—bundles of the fields’ energy and momentum. The properties of these fields and their interactions are largely dictated by principles of symmetry, including Einstein’s Special Principle of Relativity, together with a principle of ‘renormalizability,’ which dictates that the fields can interact with each other only in certain specially simple ways. The Standard Model has passed every test that can be imposed with existing experimental facilities” ([7], pp. 59–60); “By the mid-1970s it had become clear that the properties of these particles and all other known particles could be understood as mathematical consequences of …the Standard Model. The fundamental equations of the Standard Model deal not with particles and fields, but with fields of force alone; particles are just bundles of field energy” ([7], p. 109); “a(p) and a†(p) respectively annihilate and create a particle of momentum p [in free-field theories]. This is what we mean when [we] refer to elementary particles being bundles of the energy and momentum in some field”.»