Número áureo (Spanish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Número áureo" in Spanish language version.

refsWebsite
Global rank Spanish rank
6th place
5th place
1st place
1st place
513th place
300th place
769th place
53rd place
low place
1,529th place
low place
low place
low place
3,515th place
1,613th place
125th place
low place
low place
9th place
12th place

archive.org

educacion.gob.es

ehu.es

divulgamat2.ehu.es

  • "Los números de Fibonacci en Botánica ocurren con gran regularidad. En 1968, Brousseau usó 4290 piñas de diez especies de pinos encontrados en California, de las cuales solo 74 piñas (1,7 %) se desvió de los números de Fibonacci. En 1992, Jean R. V. en su artículo Model texting in phyllotaxis publicó que de 12 750 observaciones en 650 especies encontradas en la literatura de Botánica de los últimos 150 años, la sucesión de Fibonaci aparecía en más del 92 por ciento de todos los posibles casos de plantas con disposición espiral de sus elementos. Entre los 12 750 casos, la sucesión de Lucas (Edouard A. Lucas, 1842-1891) se encontró en un dos por ciento. Coxeter llama a la apariencia de los números de Fibonacci: "Fascinante tendencia". Otros se refieren a la prevalencia de Fibonacci como: "El misterio de la Filotaxis" o "La obsesión o pesadilla de los botánicos". La disposición de las escamas de las piñas, frutos de diferentes especies de pinos, se organiza en torno a dos espirales de escamas: una dextrógira y otra levógira. Se ha constatado empíricamente que en un número muy elevado de estas especies, son números consecutivos de la sucesión de Fibonacci. Otros ejemplos son las tortas de girasol, las cabezuelas de las margaritas, etc. Las hojas de la mayor parte de plantas de tallo alto, están colocadas alrededor del mismo pudiendo ser recorridas siguiendo una espiral (figura 13). Más concretamente, en Filotaxis se verifica la llamada ley de divergencia: “para cada especie de plantas el ángulo que forman dos hojas consecutivas, llamado ángulo de divergencia, es constante”". (Página 23 en adelante) Reyes Iglesias, Encarnación (2009). «"Arte y Naturaleza en clave geométrica"». Universidad de Valladolid. Archivado desde el original el 17 de octubre de 2012. Consultado el 19 de febrero de 2012. 

maths.org

plus.maths.org

sectormatematica.cl

  • Por ejemplo, la sonata Nº 1 de Mozart para piano subdivide su primer movimiento en 38 y 62 compases. El cociente, 62/38 = 1,6315, difiere en menos de un 1% de la proporción áurea. Lo mismo puede decirse de su segundo movimiento, que con 28 y 46 compases en sus dos secciones principales arrojan una proporción 46/28 = 1,6428, también muy cercana a φ. La sonata Nº 2 subdivide el primer movimiento en 56 y 88 compases, cuyo cociente es 88/56 = 1,5714, también bastante próximo a la relación áurea. Aunque desde luego no toda la música se secciona de esta manera, es uno de los posibles principios para la organización del tiempo en la música. Otro es la simetría, según el cual las secciones tienen igual duración. Curiosamente, la simetría funciona mejor en el corto plazo (a nivel de frases o motivos), mientras que la relación áurea domina las grandes extensiones. Se ha argumentado que en tiempos considerables el ser humano es incapaz de percibir objetivamente la duración, pero es posible que sí exista una percepción inconsciente de la estructura general. "La música de las esferas: de Pitágoras a Xenakis… y más acá", Apuntes para el coloquio del Departamento de Matemática, Federico Miyara, páginas 14 y 15. http://www.sectormatematica.cl/musica/esferas.pdf Archivado el 16 de enero de 2013 en Wayback Machine.

ucm.es

eprints.ucm.es

unam.mx

ejournal.unam.mx

  • "[…] la flor de un girasol está formada por pequeñas estructuras que se encuentran alineadas de tal forma que producen hileras dispuestas en espiral, algunas de ellas abren sus brazos en el sentido de las agujas del reloj y las restantes en la dirección contraria. Si las contamos veremos que siempre habrá 13 espirales que se abren hacia la derecha por 21 que se abren a la izquierda (13/21). Este hecho puede parecer banal, pero adquiere relevancia cuando se repite esta cuenta con girasoles de diferentes tamaños y con otras flores como las margaritas y los mirasoles; pues encontramos que algunas tienen 21/34, otras 34/55 y que incluso las hay de 55/89. […]" Miramontes, Pedro (abril-junio 1996). «"La geometría de las formas vivas"». E Journal, Universidad Autónoma de México (42). 

web.archive.org

  • "Los números de Fibonacci en Botánica ocurren con gran regularidad. En 1968, Brousseau usó 4290 piñas de diez especies de pinos encontrados en California, de las cuales solo 74 piñas (1,7 %) se desvió de los números de Fibonacci. En 1992, Jean R. V. en su artículo Model texting in phyllotaxis publicó que de 12 750 observaciones en 650 especies encontradas en la literatura de Botánica de los últimos 150 años, la sucesión de Fibonaci aparecía en más del 92 por ciento de todos los posibles casos de plantas con disposición espiral de sus elementos. Entre los 12 750 casos, la sucesión de Lucas (Edouard A. Lucas, 1842-1891) se encontró en un dos por ciento. Coxeter llama a la apariencia de los números de Fibonacci: "Fascinante tendencia". Otros se refieren a la prevalencia de Fibonacci como: "El misterio de la Filotaxis" o "La obsesión o pesadilla de los botánicos". La disposición de las escamas de las piñas, frutos de diferentes especies de pinos, se organiza en torno a dos espirales de escamas: una dextrógira y otra levógira. Se ha constatado empíricamente que en un número muy elevado de estas especies, son números consecutivos de la sucesión de Fibonacci. Otros ejemplos son las tortas de girasol, las cabezuelas de las margaritas, etc. Las hojas de la mayor parte de plantas de tallo alto, están colocadas alrededor del mismo pudiendo ser recorridas siguiendo una espiral (figura 13). Más concretamente, en Filotaxis se verifica la llamada ley de divergencia: “para cada especie de plantas el ángulo que forman dos hojas consecutivas, llamado ángulo de divergencia, es constante”". (Página 23 en adelante) Reyes Iglesias, Encarnación (2009). «"Arte y Naturaleza en clave geométrica"». Universidad de Valladolid. Archivado desde el original el 17 de octubre de 2012. Consultado el 19 de febrero de 2012. 
  • LA RAZÓN AUREA - Ministerio de Educación de España
  • Por ejemplo, la sonata Nº 1 de Mozart para piano subdivide su primer movimiento en 38 y 62 compases. El cociente, 62/38 = 1,6315, difiere en menos de un 1% de la proporción áurea. Lo mismo puede decirse de su segundo movimiento, que con 28 y 46 compases en sus dos secciones principales arrojan una proporción 46/28 = 1,6428, también muy cercana a φ. La sonata Nº 2 subdivide el primer movimiento en 56 y 88 compases, cuyo cociente es 88/56 = 1,5714, también bastante próximo a la relación áurea. Aunque desde luego no toda la música se secciona de esta manera, es uno de los posibles principios para la organización del tiempo en la música. Otro es la simetría, según el cual las secciones tienen igual duración. Curiosamente, la simetría funciona mejor en el corto plazo (a nivel de frases o motivos), mientras que la relación áurea domina las grandes extensiones. Se ha argumentado que en tiempos considerables el ser humano es incapaz de percibir objetivamente la duración, pero es posible que sí exista una percepción inconsciente de la estructura general. "La música de las esferas: de Pitágoras a Xenakis… y más acá", Apuntes para el coloquio del Departamento de Matemática, Federico Miyara, páginas 14 y 15. http://www.sectormatematica.cl/musica/esferas.pdf Archivado el 16 de enero de 2013 en Wayback Machine.

wolfram.com

mathworld.wolfram.com

youtube.com