Problema de Apolonio (Spanish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Problema de Apolonio" in Spanish language version.

refsWebsite
Global rank Spanish rank
2nd place
2nd place
6th place
5th place
26th place
56th place
57th place
3rd place
1st place
1st place
2,242nd place
2,917th place
5,626th place
low place
4th place
4th place
1,933rd place
1,730th place
5th place
10th place
124th place
265th place
207th place
808th place
low place
low place
low place
8,625th place
513th place
300th place
low place
low place
low place
2,778th place
18th place
34th place
489th place
509th place

archive.org

bnf.fr

gallica.bnf.fr

dartmouth.edu

math.dartmouth.edu

digizeitschriften.de

  • Steiner J. (1826). «Einige geometrische Betrachtungen». Journal für die reine und angewandte Mathematik (en alemán) 1: 161-184, 252-288. 
  • Euler L. (1810). «Solutio facilis problematis, quo quaeritur sphaera, quae datas quatuor sphaeras utcunque dispositas contingat» (PDF). Memoires de l'academie des sciences de St.-Petersbourg (en francés) 2: 17-28.  Reimpreso en Opera Omnia, serie 1, volume 26, pp. 334–343.
    Carnot L. (1803). Géométrie de position (en francés). Paris: Imprimerie de Crapelet, chez J. B. M. Duprat. pp. 357, §416. 
    Hachette J.N.P. (September de 1808). «Sur le contact des sphères; sur la sphère tangente à quatre sphères données; sur le cercle tangent à trois cercles donnés». Correspondance sur l'École Polytechnique (en francés) 1 (2): 27-28. 
    Français J. (Enero de 1810). «De la sphère tangente à quatre sphères données». Correspondance sur l'École Impériale Polytechnique (en francés) 2 (2): 63-66. 
    Français J. (Enero de 1813). «Solution analytique du problème de la sphère tangente à quatre sphères données». Correspondance sur l'École Impériale Polytechnique (en francés) 2 (5): 409-410. 
    Dupin C (Enero de 1813). «Mémoire sur les sphères». Correspondance sur l'École Impériale Polytechnique (en francés) 2 (5): 423. 
    Reye T. (1879). Synthetische Geometrie der Kugeln (PDF) (en francés). Leipzig: B. G. Teubner. 
    Serret J.A. (1848). «De la sphère tangente à quatre sphères donnèes». Journal für die reine und angewandte Mathematik (en francés) 37: 51-57. 
    Coaklay G.W. (1859–1860). «Analytical Solutions of the Ten Problems in the Tangencies of Circles; and also of the Fifteen Problems in the Tangencies of Spheres». The Mathematical Monthly (en inglés) 2: 116-126. 
    Alvord B. (1 de enero de 1882). «The intersection of circles and intersection of spheres». American Journal of Mathematics (en inglés) 5 (1): 25-44, con cuatro página de figuras. ISSN 0002-9327. doi:10.2307/2369532. 

doi.org

dx.doi.org

emis.de

gutenberg.org

  • Euler L. (1810). «Solutio facilis problematis, quo quaeritur sphaera, quae datas quatuor sphaeras utcunque dispositas contingat» (PDF). Memoires de l'academie des sciences de St.-Petersbourg (en francés) 2: 17-28.  Reimpreso en Opera Omnia, serie 1, volume 26, pp. 334–343.
    Carnot L. (1803). Géométrie de position (en francés). Paris: Imprimerie de Crapelet, chez J. B. M. Duprat. pp. 357, §416. 
    Hachette J.N.P. (September de 1808). «Sur le contact des sphères; sur la sphère tangente à quatre sphères données; sur le cercle tangent à trois cercles donnés». Correspondance sur l'École Polytechnique (en francés) 1 (2): 27-28. 
    Français J. (Enero de 1810). «De la sphère tangente à quatre sphères données». Correspondance sur l'École Impériale Polytechnique (en francés) 2 (2): 63-66. 
    Français J. (Enero de 1813). «Solution analytique du problème de la sphère tangente à quatre sphères données». Correspondance sur l'École Impériale Polytechnique (en francés) 2 (5): 409-410. 
    Dupin C (Enero de 1813). «Mémoire sur les sphères». Correspondance sur l'École Impériale Polytechnique (en francés) 2 (5): 423. 
    Reye T. (1879). Synthetische Geometrie der Kugeln (PDF) (en francés). Leipzig: B. G. Teubner. 
    Serret J.A. (1848). «De la sphère tangente à quatre sphères donnèes». Journal für die reine und angewandte Mathematik (en francés) 37: 51-57. 
    Coaklay G.W. (1859–1860). «Analytical Solutions of the Ten Problems in the Tangencies of Circles; and also of the Fifteen Problems in the Tangencies of Spheres». The Mathematical Monthly (en inglés) 2: 116-126. 
    Alvord B. (1 de enero de 1882). «The intersection of circles and intersection of spheres». American Journal of Mathematics (en inglés) 5 (1): 25-44, con cuatro página de figuras. ISSN 0002-9327. doi:10.2307/2369532. 

harvard.edu

abel.math.harvard.edu

issn.org

portal.issn.org

jstor.org

nih.gov

pubmedcentral.nih.gov

ncbi.nlm.nih.gov

oei.es

pballew.net

psu.edu

citeseerx.ist.psu.edu

ucsd.edu

math.ucsd.edu

uni.edu

ajur.uni.edu

web.archive.org

wolfram.com

mathworld.wolfram.com

worldcat.org

  • Altshiller-Court N. (1952). College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (en inglés) (2da. edición). New York: Barnes and Noble. pp. 222-227. ISBN 978-0486458052. 
    Hartshorne, Robin (2000). Geometry: Euclid and Beyond (en inglés). New York: Springer Verlag. pp. 346–355, 496, 499. ISBN 978-0387986500. 
    Rouché, Eugène; Ch. de Comberousse (1883). Traité de géométrie (en inglés) (5ta. edición). Paris: Gauthier-Villars. pp. 252-256. OCLC 252013267.